Blitze des Krebs-Pulsars


Videocredit und -rechte: Martin Fiedler

Beschreibung: Irgendwie überlebte er eine Explosion, die unsere Sonne sicher zerstört hätte. Nun rotiert er 30 Mal pro Sekunde und ist berühmt für seine schnellen Blitze. Es ist der Krebsnebel-Pulsar, der rotierende, übrig gebliebene Neutronenstern der Supernova, die den Krebsnebel erzeugt hat.

Wenn ihr genau hinseht, erkennt ihr in diesem Zeitlupenvideo die Blitze des Pulsars knapp über der Bildmitte. Das Video entstand durch Kombination von Bildern mit Blitzen des Pulsars, die mit Bildern von anderen vergleichbaren Zeiträumen gemischt wurden.

Möglicherweise wurden die Blitze des Krebs-Pulsars erstmals 1957 von einer unbekannten Frau bei einer öffentlichen Beobachtungsnacht der Universität Chicago beobachtet, doch keiner glaubte ihr. Die vorherige Supernovaexplosion wurde im Jahr 1054 n. Chr. von vielen beobachtet.

Der expandierende Krebsnebel bleibt eine malerische, expandierende Gaswolke, die im gesamten elektromagnetischen Spektrum leuchtet. Heute geht man davon aus, dass der Pulsar die Supernovaexplosion überlebte, weil er aus extrem dichter, quantenmechanisch entarteter Materie besteht.

Zur Originalseite

Supernova in NGC 2525

In der Balkenspiralgalaxie NGC 2525 im Sternbild Achterdeck des Schiffs (Puppis) wurde im Januar 2018 wurde die Supernova SN 2018gv entdeckt.

Bildcredit und Bildrechte: NASA, ESA, A. Riess (STScI/JHU) und das SH0ES-Team; Danksagung: M. Zamani (ESA/Hubble)

Beschreibung: Die große, schöne Balkenspiralgalaxie NGC 2525 liegt 70 Millionen Lichtjahre von der Milchstraße entfernt. Am Nachthimmel der Erde leuchtet sie innerhalb der Grenzen des südlichen Sternbildes Achterdeck des Schiffs (Puppis). Sie hat einen Durchmesser von ungefähr 60.000 Lichtjahren, ihre Spiralarme, die von dunklen Staubwolken, massereichen blauen Sternen und rötlichen Sternbildungsregionen gesäumt sind, winden sich durch diesen prächtigen Schnappschuss des Weltraumteleskops Hubble.

Im Januar 2018 wurde die Supernova SN 2018gv im Randbereich von NGC 2525 entdeckt, sie ist der hellste Stern links unten im Bild. Eine einjährige Serie an Hubble-Beobachtungen folgte der Sternexplosion in Zeitraffer – es war die Kernexplosion eines weißen Zwergsterns, die ausgelöst wurde, nachdem er Material von einem Begleitstern angesammelt hatte und langsam verblasst war. Wie wird als Typ-Ia-Supernova eingestuft, Ihre Helligkeit dient als kosmische Standardkerze. Mithilfe von Typ-Ia-Supernovae werden Entfernungen zu Galaxien vermessen und die Expansionsrate des Universums bestimmt.

Zur Originalseite

Der Krebsnebel M1 von Hubble

Der Krebsnebel ist das Ergebnis einer Supernova, die 1054 n. Chr. zu sehen war.

Bildcredit: NASA, ESA, Hubble, J. Hester, A. Loll (ASU)

Beschreibung: Dieses Durcheinander blieb übrig, als ein Stern explodierte. Der Krebsnebel ist das Ergebnis einer Supernova, die 1054 n. Chr. zu sehen war. Er ist voller rätselhafter Fasern, die nicht nur ungeheuer komplex sind, sondern anscheinend auch eine geringere Masse haben, als bei der ursprünglichen Supernova ausgestoßen wurde, und eine höhere Geschwindigkeit, als man bei einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen. Es ist in drei Farben dargestellt, die nach wissenschaftlichen Kriterien gewählt wurden.

Der Krebsnebel ist etwa 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar: Das ist ein Neutronenstern, der so viel Masse hat wie die Sonne, aber nur die Größe einer Kleinstadt. Der Krebs-Pulsar rotiert etwa 30 Mal pro Sekunde um seine Achse.

Zur Originalseite

Supernovakanone stößt den Pulsar J0002 aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Canadian Galactic Plane Survey (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Beschreibung: Was kann einen Neutronenstern wie eine Kanonenkugel ausstoßen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebelartigen Überrest CTB 1 erzeugte, einen massereichen Stern, doch zusätzlich schoss sie den neu entstandenen Kern eines Neutronensterns – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7-mal pro Sekunde um seine Achse. Er wurde mithilfe der Software Einstein@Home entdeckt, die  Daten des Gammastrahlen-Weltraumteleskops Fermi der NASA durchsucht. Der Pulsar PSR J0002+6216 (kurz J0002) rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde dahin. Er hat den Supernovaüberrest CTB 1 bereits verlassen und ist schnell genug, um aus unserer Galaxis hinauszukommen. Die hier abgebildete Spur des Pulsars entspringt – wie man sieht – links unter dem Supernovaüberrest.

Dieses Bild ist eine Kombination aus Radiobildern des VLA– und des DRAO-Radioobservatoriums sowie Daten, die mit dem Infrarotobservatorium IRAS der NASA gewonnen wurden. Es ist bekannt, dass Supernovae sich wie Geschütze und Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das anstellen.

Zur Originalseite

Gerüchte über ein dunkles Universum

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: High-Z Supernova-Suchteam, HST, NASA

Beschreibung: Vor 21 Jahren wurden erstmals Ergebnisse vorgestellt, die Hinweise lieferten, dass sich ein Großteil der Energie unseres Universums nicht in Sternen oder Galaxien befindet, sondern an den Raum selbst gebunden ist. Nach Ansicht der Kosmologen setzten neue Beobachtungen ferner Supernovae eine große kosmologische Konstante – Dunkle Energie – voraus.

Die Idee einer kosmologischen Konstante war nicht neu – es gibt sie seit Beginn der heutigen relativistischen Kosmologie. Solche Annahmen waren jedoch in der Regel nicht sehr verbreitet, weil die Dunkle Energie so anders war als die bekannten Bestandteile des Universums, außerdem schien die Menge an Dunkler Energie durch andere Beobachtungen begrenzt, und weniger seltsame Kosmologien hatten die Daten bis dahin ohne eine beträchtliche Menge an Dunkler Energie gut erklärt.

Das Besondere war hier die offenbar direkte und zuverlässige Beobachtungsmethode sowie der gute Ruf der Wissenschaftler, welche die Untersuchungen durchführen. Im Laufe von zwei Jahrzehnten sammelten unabhängige Arbeitsgruppen von Astronominnen und Astronomen weiterhin Daten, welche die Existenz Dunkler Energie und die das verstörende Ergebnis eines derzeit beschleunigt expandierenden Universums zu bestätigen scheinen.

2011 erhielten die Arbeitsgruppenleiter für ihre Arbeit den Nobelpreis für Physik. Dieses Bild einer Supernova, die 1994 in den Außenbereichen einer Spiralgalaxie zu beobachten war, wurde von einer dieser Forschungsgruppen aufgenommen.

Zur Originalseite

Die expandierenden Echos der Supernova 1987A


Videocredit und -rechte: David Malin, AAT

Beschreibung: Erkennen Sie die Supernova 1987A? Es ist nicht schwierig – sie ereignete sich in der Mitte der expandierenden Zielscheibe. Die Sternexplosion wurde 1987 erstmals beobachtet, doch das Licht der SN 1987A wurde weiterhin von interstellaren Staubklumpen reflektiert und gelangte noch viele Jahre später zu uns. Diese Lichtechos wurden zwischen 1988 und 1992 mit dem Anglo Australian Telescope (AAT) in Australien erfasst und wandern auf dieser Zeitrafferaufnahme von der Position der Supernova auswärts.

Um diese Bilder zu erstellen, wurde ein Bild der Großen Magellanschen Wolke, das vor der Ankunft des Supernovalichtes aufgenommen wurde, von späteren GMW-Bildern abgezogen, die bereits das Supernova-Echo enthielten. Weitere bedeutende Lichtecho-Sequenzen wurden im Rahmen der Himmelsüberwachungsprojekte EROS2 und SuperMACHO aufgenommen. Untersuchungen expandierender Lichtechtringe um andere Supernovae ermöglichten eine genauere Bestimmung von Ort, Zeit und Symmetrie dieser gewaltigen Sternexplosionen.

Gestern war der 32. Jahrestag der SN 1987A, der letzten dokumentierten Supernova in und um unsere Milchstraße und der letzten, die mit bloßem Auge sichtbar war.

Offene Wissenschaft: Stöbern Sie in mehr als 1800+ Codes der Astrophysics Source Code Library

Zur Originalseite

Der verlorene Stern Eta Carinae

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Beschreibung: Eta Carinae könnte jederzeit explodieren. Doch niemand weiß, wann – es könnte nächstes Jahr sein – oder in einer Million Jahre. Die Masse von Eta Carinae beträgt etwa 100 Sonnenmassen und macht ihn zu einem ausgezeichneten Kandidaten für eine voll entfaltete Supernova.

Historische Aufzeichnungen zeigen, dass Eta Carinae vor etwa 170 Jahren einen ungewöhnlichen Ausbruch hatte, der ihn zu einem der hellsten Sterne am südlichen Himmel machte. Eta Carinae im Schlüssellochnebel ist der einzige Stern, bei dem man derzeit vermutet, dass er natürliches Laserlicht abstrahlt. Dieses Bild bringt Details im ungewöhnlichen Nebel zum Vorschein, der diesen gefährlichen Stern umgibt.

Im Zentrum von Eta Carinae entspringen Lichtkreuze in Form heller, vielfarbiger Streifen, die durch das Teleskop verursacht werden. Die zwei getrennten Lappen des Homunkulusnebels umschließen die heiße Zentralregion, einige seltsame strahlenförmige Schlieren in Rot verlaufen sternförmig nach rechts. Die Lappen sind mit Spuren von Gas und Staub gefüllt und absorbieren das blaue und das ultraviolette Licht, das nahe der Mitte abgestrahlt wird. Die Schlieren bleiben rätselhaft.

Zur Originalseite

Tychos Supernovaüberrest in Röntgenlicht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA / CXC / F.J. Lu (Chinese Academy of Sciences) et al.

Beschreibung: Welcher Stern erzeugte diesen riesigen Bovisten? Hier ist der heiße, expandierende Nebel von Tychos Supernovaüberrest abgebildet. Er ist das Ergebnis einer Sternexplosion, die vor mehr als 400 Jahren von dem berühmten Astronomen Tycho Brahe beschrieben wurde. Dieses Bild ist ein Komposit in drei Röntgen-Spektralfarben, die mit dem Röntgenobservatorium Chandra im Orbit aufgenommen wurden.

Die expandierende Gaswolke ist extrem heiß, und die leicht unterschiedlichen Ausdehnungsraten verleihen der Wolke eine bauschige Erscheinung. Der Stern, der die Supernova SN 1572 erzeugte, wurde wahrscheinlich gänzlich aufgelöst, doch ein Stern mit dem Spitznamen Tycho G, der zu blass ist, um ihn hier zu erkennen, war vermutlich sein Begleiter. Überreste des Vorläufers von Tychos Supernova zu finden ist wichtig, da es eine Supernova vom Typ Ia war. Diese sind eine wichtige Sprosse der Entfernungsleiter, welche die Größenordnung des sichtbaren Universums kalibriert. Der Helligkeitshöhepunkt von Typ-Ia-Supernovae gilt als gut erforscht, weshalb sie bei der Erforschung des Zusammenhangs zwischen Blässe und Entfernung im fernen Universum ziemlich wertvoll sind.

Zur Originalseite