Der planetarische Nebel der Roten Spinne

Mitten im Bild ist ein helles Gebilde, von dem spinnenförmige Fortsätze auslaufen.

Bildcredit: NASA, ESA, Hubble, HLA; Überarbeitung und Bildrechte: Jesús M.Vargas und Maritxu Poyal

Beschreibung: Was für ein verworrenes Netz ein planetarischer Nebel doch weben kann. Der planetarische Nebel der Roten Spinne weist eine komplexe Struktur auf, die entstehen kann, wenn ein normaler Stern seine äußeren Gase abwirft und ein Weißer Zwergstern wird.

Dieser zweilappige symmetrische planetarische Nebel wird offiziell als NGC 6537 bezeichnet und beherbergt einen der heißesten Weißen Zwerge, die je beobachtet wurden, er war vielleicht Teil eines Doppelsternsystems.

Bei den internen Winden, die vom Zentralstern in der Mitte ausströmen,
wurden Geschwindigkeiten von mehr als 1000 Kilometern pro Sekunde gemessen. Diese Winde erweitern den Nebel und fließen die Nebelwände entlang, dadurch kollidieren Wellen aus heißem Gas und Staub. Atome in diesen kollidierenden Erschütterungen strahlen Licht ab, was im Bild des Weltraumteleskops Hubble in repräsentativen Farben dargestellt ist. Der Rote-Spinne-Nebel liegt im Sternbild Schütze (Sagittarius). Seine Entfernung ist nicht genau bekannt, wurde aber auf etwa 4000 Lichtjahre geschätzt.

Zur Originalseite

Schnelle Sterne und Einzelgänger-Planeten im Orionnebel

Das Bild ist von Nebeln gefüllt, in der Mitte leuchten die vier markanten Sterne des Trapeziums im Orionnebel, kaum vom hellen Hintergrund zu unterscheiden. Links oben ist ein großer dunkelroter Nebelbereich, links unten ein kleinerer, violetter Nebelteil mit zwei Sternen.

Bildcredit: NASA, ESA, Hubble

Beschreibung: Beginnen Sie beim Sternbild Orion. Unter dem Gürtel des Orion ist eine verschwommene Region, die als Orionnebel bekannt ist.

In diesem Nebel befindet sich ein heller, als Trapez bekannter Sternhaufen, der nahe der Bildmitte von vier hellen Sternen markiert wird. Die neu entstandenen Sterne im Trapez und den umgebenden Regionen zeigen, dass der Orionnebel eine der aktivsten Sternbildungsregionen in unserem Bereich der Galaxis ist.

Im Orion führten Supernovaexplosionen und enge Wechselwirkungen zwischen den Sternen zu Einzelgänger-Planeten und -Sternen, die sich schnell im Raum bewegen. Manche dieser schnellen Sterne wurden entdeckt, als man unterschiedliche Bilder dieser Region, die vom Weltraumteleskop Hubble im Abstand mehrerer Jahre fotografiert wurden, miteinander verglich.

Viele der Sterne auf diesem Bild, die in sichtbarem Licht und nahem Infrarot fotografiert wurden, erscheinen ungewöhnlich rot, weil sie durch Staub zu sehen sind, der einen Großteil ihres blauen Lichts streut.

Zur Originalseite

Der Rosettennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Evangelos Souglakos

Beschreibung: Wäre der Rosettennebel mit einem anderen Namen genauso hübsch? Die langweilige Bezeichnung NGC 2237 im New General Catalog kann die Erscheinung dieses blumigen Emissionsnebels nicht mindern. Im Nebel liegt ein offener Haufen heller junger Sterne mit der Bezeichnung NGC 2244. Diese Sterne entstanden vor etwa vier Millionen Jahren im Nebelmaterial, ihre Sternwinde bilden eine Höhlung im Zentrum des Nebels, die durch eine Staubschicht und heißes Gas isoliert ist. Ultraviolettes Licht der heißen Haufensterne bringt den umgebenden Nebel zum Leuchten. Der Rosettennebel ist etwa 100 Lichtjahre groß, ungefähr 5000 Lichtjahre entfernt und mit einem kleinen Teleskop im Sternbild Einhorn (Monoceros) sichtbar.

Zur Originalseite

Der Lagunennebel in hoher Auflösung

Das Bild zeigt den bekannten Nebel mit Nebeln im Umfeld. Die Nebel leuchten in einem kräftigen Magenta, nur um die wenigen helleren Sterne leuchten blaue Nebel.

Bildcredit und Bildrechte: Daten – ESO/INAF/R. Colombari/E. Recurt; Montage und Bearbeitung: R. Colombari

Beschreibung: Sterne bekämpfen Gas und Staub im Lagunennebel, doch die Fotografen gewinnen. Dieser fotogene Nebel ist auch als M8 bekannt. Er ist sogar ohne Fernglas im Sternbild Schütze sichtbar. Die energiereichen Prozesse der Sternbildung liefern nicht nur die Farben, sondern auch das Chaos.

Das rot leuchtende Gas entsteht durch energiereiches Sternenlicht, das auf interstellaren Wasserstoff trifft. Die dunklen Staubfasern in M8 entstanden in den Atmosphären kühler Riesensterne und in den Überresten von Supernovaexplosionen. Das Licht, das wir heute sehen, verließ M8 vor ungefähr 5000 Jahren. Licht braucht ungefähr 50 Jahre, um diesen Bereich von M8 zu queren. Die Daten, aus denen dieses Bild erstellt wurde, stammen von der Weitwinkelkamera OmegaCam am VLT-Durchmusterungsteleskop (VST) der ESO.

Zur Originalseite

NGC 4696: Fasern um ein Schwarzes Loch

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, A. Fabian

Beschreibung: Was geschieht im Zentrum der elliptischen Galaxie NGC 4696? Auf diesem kürzlich veröffentlichten Bild des Weltraumteleskops Hubble wurden darin lange Tentakel aus Gas und Staub sehr detailreich abgebildet. Diese Fasern verlaufen anscheinend zur Zentralregion der Galaxie, die vermutlich von einem sehr massereichen Schwarzen Loch besetzt ist. Es gibt Hinweise, dass dieses Schwarze Loch Energie abzieht, die das umgebende Gas erhitzt, kühlere Fasern aus Gas und Staub ausstößt und die Sternbildung beendet. Diese Fasern werden von Magnetfeldern in Schwebe gehalten, scheinen dann auf spiralförmigen Bahnen zum zentralen Schwarzen Loch zu laufen und schließlich dieses zu umkreisen.

NGC 4696 ist die größte Galaxie im Zentaurus-Galaxienhaufen, der etwa 150 Millionen Lichtjahre von der Erde entfernt ist. Dieses Bild zeigt eine ungefähr 45.000 Lichtjahre breite Region.

Zur Originalseite

W5 – die Seele der Sternentstehung

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: José Jiménez Priego (Astromet)

Beschreibung: Wo entstehen Sterne? Häufig in energiereichen Regionen, wo Gas und dunkler Staub in einer chaotischen Umgebung herumgestoßen werden. Hier sind die hellen, massereichen Sterne nahe dem Zentrum von W5, dem Seelennebel, sie explodieren und emittieren Ionisationslicht und energiereiche Winde.

Auswärts strömendes Licht und Gas verdrängen und verdampfen viel vom umgebenden Gas und Staub, hinterlassen jedoch hinter dichten, schützenden Knoten Säulen aus Gas. In diesen Knoten entstehen auch Sterne. Dieses Bild zeigt das Innerste von W5, einen ungefähr 1000 Lichtjahre großen Bereich voller Sterne bildender Säulen. Der Seelennebel ist auch als IC 1848 katalogisiert, er ist ungefähr 6500 Lichtjahre entfernt im Sternbild der Königin von Aithiopia (Kassiopeia). Wahrscheinlich bleibt in wenigen Hundert Millionen Jahren nur ein Haufen neu entstandener Sterne übrig. Diese Sterne treiben auseinander.

Zur Originalseite

Das Weltraumteleskop Herschel der ESA zeigt Orion

Die leuchtenden Nebelfasern im Bild sind in sichtbarem Licht dunkel. Sie wurden in Infrarot-Wellenlängen aufgenommen und sind in Falschfarben dargestellt. Die Fasern befinden sich in und um den Orionnebel.

Bildcredit und Bildrechte: ESA/Herschel/PACS/SPIRE

Das dramatische Bild späht in den Orionnebel M42. Er ist die nächstliegende große Region mit Sternbildung. Das Kompositbild in Falschfarben entstand aus Infrarot-Daten des Weltraumteleskops Herschel. Es erkundet die kosmische Wolke, die etwa 1500 Lichtjahre entfernt ist.

Kalte, dichte Fasern aus Staub leuchten hier in rötlichen Farbtönen. In sichtbaren Wellenlängen wären sie dunkel. Die Fasern sind Lichtjahre lang. Sie verweben helle Flecken, die Bereiche mit kollabierenden Protosternen anzeigen. Der hellste, bläuliche Bereich oben ist wärmerer Staub. Er wird von den heißen Sternen im Trapez-Haufen erwärmt. Die Trapezsterne liefern auch die Energie für das sichtbare Leuchten im Nebel.

Die Daten von Herschel liefern neue Hinweise, dass das UV-Licht der heißen jungen Sterne wahrscheinlich zur Entstehung von Molekülen aus Kohlenwasserstoff beiträgt. Diese Moleküle sind die Grundbausteine des Lebens. Dieses Bild von Herschel ist am Himmel etwa 3 Grad breit. Das entspricht in der Entfernung des Orionnebels etwa 80 Lichtjahren.

Zur Originalseite

Der Helixnebel in Infrarot

Mitten im dunklen Bild mit schwach leuchtenden Sternen leuchtet ein Nebel, der an ein Auge mit roter Iris erinnert.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer; Bearbeitung: Judy Schmidt

Warum leuchtet dieses kosmische Auge so rot? Wegen des Staubs. Das Bild stammt vom robotischen Weltraumteleskop Spitzer. Es zeigt den gut untersuchten Helixnebel (NGC 7293) in Infrarotlicht. Der Nebel ist etwa 700 Lichtjahre entfernt und liegt im Sternbild Wassermann. Er ist eine Hülle aus Staub und Gas um einen zentralen Weißen Zwerg. Sein Durchmesser beträgt zwei Lichtjahre.

Seit Langem gilt er als gutes Beispiel für einen planetarischen Nebel. Das ist das Endstadium in der Entwicklung eines sonnenähnlichen Sterns. Die Daten von Spitzer zeigen, dass der Zentralstern im Nebel von einem überraschend hellen Leuchten in Infrarot umgeben ist. Modelle zeigen, dass das infrarote Leuchten von einer Staub- und Trümmerwolke stammen könnte. Das nebelartige Material wurde vielleicht vor Tausenden Jahren vom Stern ausgestoßen.

Der nahe Staub entstand womöglich bei Kollisionen von Objekten, die sich in einem Speicher befinden, ähnlich wie der Kuipergürtel oder die Oortsche Wolke im Sonnensystem, aus der viele Kometen stammen. Die kometenähnlichen Körper bei einem möglichen fernen Planetensystem um den Zentralstern des Nebels hätten in diesem Fall sogar das dramatische Endstadium der Sternentwicklung überstanden.

Zur Originalseite