Hinweis auf einen aktiven Vulkan auf der Venus

Siehe Beschreibung. Vulkanismus auf dem Planeten Venus; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, ESA, Venus Express: VIRTIS, USRA, LPI

Beschreibung: Sind die Vulkane auf der Venus noch aktiv? Wir kennen mehr Vulkane auf der Venus als auf der Erde, aber wann zum letzten Mal Vulkane auf der Venus ausgebrochen sind, ist nicht genau bekannt. Kürzlich wurde jedoch ein Hinweis auf sehr aktuellen Vulkanismus auf der Venus entdeckt, und zwar hier auf der Erde. Laborergebnisse zeigten, dass Infrarot-Bilder von Oberflächenlava in der dichten Venusatmosphäre im Laufe weniger Monate abklingen würden. Diese Abschwächung ist auf Bildern der ESA-Sonde Venus Express nicht zu beobachten.

Venus Express trat 2006 in eine Umlaufbahn um die Venus ein und hatte bis 2014 Kontakt mit der Erde. Daher ist das Infrarotleuchten (hier in Falschfarbenrot dargestellt), das Venus Express von Idunn Mons aufnahm, und das auf einem Bild der NASA-Sonde Magellan zu sehen ist, ein Hinweis, dass dieser Vulkan vor sehr kurzer Zeit ausgebrochen ist und heute immer noch aktiv ist. Der Vulkanismus auf der Venus könnte auch Erkenntnisse zum Vulkanismus auf der Erde und anderswo in unserem Sonnensystem liefern.

Neu: APOD ist nun auf Türkisch (Türkei) verfügbar
Zur Originalseite

Sanddünen tauen auf dem Mars

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: ESA, Roscosmos, CaSSIS

Beschreibung: Was sind das für seltsame Formen auf dem Mars? Es sind tauende Sanddünen. Als der Frühling auf der Nordhalbkugel des Mars anbrach, begannen die Sanddünen in der Nähe des Pols, die der ExoMars Trace Gas Orbiter der ESA Ende Mai hier abbildete, zu tauen. Kohlendioxid– und Wassereis sublimierten in der dünnen Atmosphäre unmittelbar zu Gas.

Wenn dünnere Eisregionen auftauen, legen sie Sand frei, dessen dunkle Färbung das Sonnenlicht aufnimmt und so das Tauen beschleunigt. An dem Prozess könnten sogar Sandstrahlen beteiligt sein, die durch das dünner werdende Eis platzen. Bis zum Sommer breiten sich die Flecken aus und erfassen die ganzen Dünen. Der Nordpol des Mars ist von vielen ähnlichen Sicheldünenfeldern umgeben, deren seltsam glatte Bögen von den ständigen Marswinden geformt werden.

Erstellen Sie ein fernes Erbe: Schicken Sie Ihren Namen zum Mars

Zur Originalseite

Rätsel um Methan auf dem Mars wird größer


Videocredit: NASA’s GSFC, Scientific Visualization Studio

Beschreibung: Das Methan-Rätsel auf dem Mars wurde soeben noch seltsamer. Neue Ergebnisse des ExoMars Trace Gas Orbiter der ESA und Roscosmos zeigten wider Erwarten kein Methan in der Marsatmosphäre. Dieses Ergebnis folgt auf die Entdeckung von Methan im Jahr 2013 durch den Rover Curiosity der NASA, was scheinbar am nächsten Tag durch Mars Express im Orbit bestätigt wurde.

Das Thema ist sehr interessant, weil auf der Erde Leben ein Hauptproduzent von Methan ist, was zu der faszinierenden Erwartung führt, dass eine Lebensform – vielleicht mikrobielles Leben – unter der Marsoberfläche Methan erzeugt. Doch es gibt auch nichtbiologische Methanquellen. Hier ist eine Visualisierung der ersten angeblichen Methanschwade über dem Mars, die 2003 von der Erde aus entdeckt wurde.

Der aktuelle Nicht-Nachweis von Methan durch den ExoMars-Orbiter könnte bedeuten, dass Methan auf dem Mars auf unerwartete Weise zerstört wird, oder dass nur wenige Gebiete auf dem Mars Methan freisetzen – und das vielleicht nur zu gewissen Zeiten. Da das Rätsel nun noch größer wurde, wird auch die Erforschung der Atmosphäre unseres Nachbarplaneten durch die Menschheit vertieft werden.

Zur Originalseite

Planck-Karten des Mikrowellenhintergrundes

Das ovale Bild ist eine Karte der kosmischen Hintergrundstraße. Rote und blaue Flecken zeigen Stellen, die heißer oder kälter sind als der Durchschnitt.

Bildcredit: Europäische Weltraumagentur ESA, Planck-Arbeitsgemeinschaft

Woraus besteht unser Universum? Um das herauszufinden, startete die ESA den Satelliten Planck. Er kartierte von 2009 bis 2013 leichte Temperaturunterschiede auf der ältesten bekannten optischen Oberfläche so detailreich wie nie zuvor. Diese Oberfläche ist der Himmelshintergrund, der vor Milliarden Jahren übrig blieb, als unser Universum erstmals für Licht durchsichtig wurde.

Der kosmische Mikrowellenhintergrund ist in allen Richtungen sichtbar. Es ist ein komplexer Bildteppich. Wir beobachten heiße und kalte Muster an Stellen, wo das Universum aus bestimmten Arten von Energie besteht, die sich auf eine gewisse Weise entwickelt haben. Letzte Woche wurden die endgültigen Ergebnisse veröffentlicht. Sie bestätigen, dass ein Großteil unseres Universums aus rätselhafter, unbekannter Dunkler Energie besteht. Außerdem ist ein Großteil der verbleibenden Materieenergie seltsam dunkel.

Die „finalen“ Planckdaten von 2018 bestätigen auch, dass das Universum etwa 13,8 Milliarden Jahre alt ist. Sie zeigen auch, dass die lokale Ausdehnungsrate, die sogenannte Hubblekonstante, 67,4 (+/- 0,5) km/sec/Mpc beträgt. Seltsamerweise ist die Hubblekonstante, die durch Beobachtung des frühen Universums ermittelt wurde, etwas niedriger als die Hubblekonstante, die mit anderen Methoden im späten Universum gemessen wurde. Dieser Unterschied sorgt für Diskussionen und Vermutungen.

Zur Originalseite

Glücks-Wagenrad

Die drei Galaxien im Bild wirken verzerrt. Rechts ist eine Galaxie, die im inneren Kern gelb leuchtet und sehr eng gewickelte Spiralarme hat. Außen herum verläuft ein blauer heller Kreis aus Sternen. Zwischen dem Kern und dem Ring verlaufen zarte Speichen. Links sind zwei viel kleinere Galaxien, die untere leuchtet gelblich und wirkt strukturiert, die obere ist verzerrt und leuchtet blau.

Bildcredit: ESA, NASA

Beschreibung: Bei einer Kollision zweier Galaxien entstand eine in kosmischem Maßstab überraschend gut erkennbare Form: die „Wagenradgalaxie„. Das Wagenrad ist Teil einer etwa 500 Millionen Lichtjahre entfernten Galaxiengruppe im Sternbild Bildhauer. Links sind zwei kleinere Galaxien der Gruppe zu sehen.

Der Radkranz der Wagenradgalaxie ist eine gewaltige ringartige Struktur mit einem Durchmesser von 150.000 Lichtjahren. Er besteht aus neu entstandenen, extrem hellen, massereichen Sternen. Wenn Galaxien kollidieren, durchdringen sie einander, ihre Einzelsterne kommen selten in Berührung miteinander. Doch die Gravitationsfelder der Galaxie sind durch die Kollision stark verzerrt.

Die ringartige Form ist das Ergebnis der gravitativen Zerrüttung, verursacht durch eine kleine Galaxie, die in eine große Galaxie eindrang, interstellares Gas und Staub komprimierte und eine Sternbildungswelle auslöste, die vom Aufschlagspunkt nach außen wanderte – wie eine Welle über die Oberfläche eines Teiches. In diesem Fall könnte die große Galaxie ursprünglich eine Spirale gewesen sein, ähnlich wie unsere Milchstraße, die durch die Kollision in die Radform umgewandelt wurde. Was aber geschah mit dem kleinen Galaxieneindringling?

Zur Originalseite

Erforsche Rosettas Kometen

Animation, interaktiv: sci.esa.int/comet-viewer/

Bildcredit: Science Office, ESA

Was sieht man beim Flug um einen Kometenkern? Seht selbst! Wartet, bis euer hoffentlich WebGL-kompatibler Browser ein detailliertes digitales Modell des Kometen 67P lädt. Dann forscht los!

Mit einer Standard-Maus könnt ihr mit der linken Taste den Kometen drehen, mit der rechten Taste ihr den Kometen bewegen und mit dem Scrollrad vergrößern oder verkleinern. Die robotische Raumsonde Rosetta der ESA umkreiste den Kometen C67/P Tschurjumow-Gerassimenko ab Mitte 2014. Letzten Freitag wurde sie nach einer unglaublich erfolgreichen Mission wie geplant auf der Oberfläche abgesetzt und abgeschaltet.

Rosetta schaffte viele beachtliche wissenschaftlichen Leistungen. Dank Rosetta verstehen wir nun besser, wie auf Kometenstrahlen entstehen, wenn sich ein Komet der Sonne nähert.

Zur Originalseite

Eine Klippe über dem Kometen 67P

Über einem sonnenbeschienenen Haufen mit Geröll ragt eine schattige Klippe hoch. Es ist der Komet Tschurjumow-Gerassimenko, das Bild stammt von der Raumsonde Rosetta.

Bildcredit und Lizenz: ESA, Rosetta, NAVCAM

Was ragt über den geschotterten Hügel auf dem Kometen Tschurjumow-Gerassimenko? Es ist eine zerklüftete Klippe. Der Kern des Kometen 67P/Tschurjumow-Gerassimenko hat eine ungewöhnliche zweilappige Form. Er bietet ungewöhnlich dramatische Perspektiven. Die Raumsonde Rosetta fotografierte einige davon, seit sie letzten September beim Kometen ankam.

Die Landschaft auf dem Kometen ist etwa 850 Meter breit. Sie wurde letzten Oktober aufgenommen und digital nachbearbeitet. Inzwischen strömen aus dem Kometen Tschurjumow-Gerassimenko Strahlen. Bis August kommt der Komet der Sonne immer näher.

Unterwegs sucht Rosetta weiterhin nach Signalen der Raumsonde Philae. Diese landete letzten November auf dem Kern. Doch sie prallte ab und gelangte an einen unbekannten Ort auf der Oberfläche. Wenn Philae wieder von der Sonne beleuchtet wird, gewinnt er vielleicht genug Energie, um Signale an Rosetta zu senden.

Zur Originalseite

Der Schmetterlingsnebel von Hubble

Der leuchtende Nebel im Bild erinnert an einen bunten Schmetterling. Der heiße Stern in der Mitte ist von einem Staubwulst verborgen.

Bildcredit: NASA, ESA und das Hubble SM4 ERO Team; Neubearbeitung und Bildrechte: Francesco Antonucci

Die hellen Sternhaufen und Nebel am Nachthimmel des Planeten Erde werden oft nach Blumen oder Insekten benannt. NGC 6302 ist da keine Ausnahme, trotz seiner Flügelspannweite von mehr als 3 Lichtjahren.

Der vergehende Zentralstern in diesem besonderen planetarischen Nebel hat eine Oberflächentemperatur von etwa 250.000 Grad Celsius. Er ist außergewöhnlich heiß und leuchtet hell im Ultraviolettlicht. Er ist aber durch einen dichten Staubwulst vor dem direkten Blick verborgen.

Dieses scharfe Telebild entstand 2009 mit der Wide Field Camera 3 am Weltraumteleskop Hubble. Die Farben der Aufnahme wurden hier neu bearbeitet. Der Staubwulst um den Zentralstern ist um eine helle Höhle aus ionisiertem Gas gewickelt. Er befindet sich mitten im Bild. Wir sehen den Wulst fast genau von der Kante.

In der staubhaltigen Hülle des heißen Sterns befindet sich molekularer Wasserstoff. NGC 6302 ist etwa 4000 Lichtjahre entfernt. Er schimmert im arachnologisch korrekten Sternbild Skorpion (Scorpius).

Zur Originalseite