Dunkle Nebel im Chamäleon

Staubwolken und Dunkelnebel im Sternbild Chamäleon.

Bildcredit und Bildrechte: Jarmo Ruuth, Teleskop Live, Himmelsspiegel-Observatorium

Beschreibung: Manchmal hat der dunkle Staub im interstellaren Raum eine schräge Eleganz. So ist es auch im weit südlich gelegenen Sternbild Chamäleon. Normalerweise ist dunkler Staub zu blass, um gesehen zu werden. Vor allem ist Staub dafür bekannt, dass er Licht von dahinter liegenden Sternen und Galaxien blockiert.

Auf dieser vier Stunden belichteten Aufnahme leuchtet der Staub jedoch hauptsächlich in seinem eigenen Licht, wobei seine kräftigen Rot- und Nahinfrarotfarben einen braunen Farbton erzeugen. Der helle Stern Beta Chamaeleontis rechts neben der Mitte bildet dazu einen Kontrast in Blau. Der Staub um ihn herum reflektiert vorwiegend die blauen Anteile seines großteils blau-weißen Lichtes.

Alle fotografierten Sterne und der Staub liegen in unserer Milchstraße mit einer bemerkenswerten Ausnahme: Der weiße Fleck unter Beta Chamaeleontis ist die weit entfernte Galaxie IC 3104. Interstellarer Staub entsteht vorwiegend in den kühlen Atmosphären von Riesensternen und wird von Sternenlicht, Sternwinden und Sternexplosionen wie Supernovae in den Weltraum verbreitet.

Zur Originalseite

James-Webb-Weltraumteleskop über der Erde

Das James-Webb-Weltraumteleskop JWST nach dem Start mit einer Ariane V im Erdorbit auf dem Weg zum L2-Punkt von Sonne und Erde.

Bildcredit: Arianespace, ESA, NASA, CSA, CNES

Beschreibung: Es gibt ein großes neues Teleskop im Weltraum. Das James-Webb-Weltraumteleskop (JWST) hat nicht nur einen Spiegel, dessen Fläche mehr als fünfmal so groß ist wie die des Hubble-Spiegels, sondern es sieht auch besser in Infrarotlicht.

Dieses Bild zeigt JWST hoch über der Erde, kurz nachdem es von der Oberstufe einer Ariane V freigesetzt wurde, die gestern von Französisch-Guayana startete. Im Lauf des nächsten Monats begibt sich das JWST in die Nähe des L2-Punktes von Sonne und Erde, wo es die Sonne zusammen mit der Erde umkreisen wird. Während dieser Zeit und in den fünf Monaten danach entfaltet das JWST seinen mehrteiligen Spiegel sowie eine Anordnung ausgeklügelter wissenschaftlicher Instrumente und testet sie.

Wenn alles gut geht, erforscht das JWST ab dem Sommer 2022 Galaxien im gesamten Universum und Planeten in der Milchstraße, die um Sterne kreisen.

APOD-Galerie: Start des Webb-Weltraumteleskops
Zur Originalseite

Die ungewöhnliche Spirale bei LL Pegasi

LL Pegasi, auch AFGL 3068 oder IRAS 23166+1655, bildet eine rätselhafte Spiralstruktur.

Bildcredit: NASA, ESA, Hubble, HLA; Bearbeitung und Bildrechte: Jonathan Lodge

Beschreibung: Wie entstand die seltsame Spiralstruktur links oben? Das ist nicht bekannt, doch wahrscheinlich stammt sie von einem Stern in einem Doppelsternsystem, der die Phase eines planetarischen Nebels erreicht, in der die äußere Atmosphäre abstoßen wird.

Die riesige Spirale misst etwa ein Drittel eines Lichtjahres und besitzt vier oder fünf beispiellos regelmäßige vollständige Windungen. Angesichts der Expansionsrate des Spiralgases entsteht etwa alle 800 Jahre eine neue Schicht, das entspricht in etwa der Zeit, in der die beiden Sterne einander einmal umkreisen.

Das Sternsystem, wo die Spirale entstand, ist als LL Pegasi bekannt, aber auch als AFGL 3068 oder IRAS 23166+1655. Dieses Bild wurde vom Weltraumteleskop Hubble in nahem Infrarotlicht aufgenommen. Warum die Spirale leuchtet, ist ebenfalls rätselhaft, die führende Hypothese lautet, dass sie vom Licht eines nahen Sterns beleuchtet wird.

Zur Originalseite

Äquinoktium auf einer rotierenden Erde


Bildcredit: Meteosat 9, NASA, earthobservatory, Robert Simmon

Beschreibung: Wann wird die Grenze zwischen Nacht und Tag senkrecht? Heute. Auf dem Planeten Erde ist heute Tagundnachtgleiche, Tag und Nacht sind somit fast gleich lang. Zum Äquinoktium verläuft der Terminator der Erde – die Trennlinie zwischen Tag und Nacht – senkrecht und verbindet Nord– und Südpol.

Ihr seht das auf diesem Zeitraffervideo, das ein ganzes Jahr auf dem Planeten Erde in zwölf Sekunden zeigt. Der Satellit Meteosat 9 im geosynchronen Orbit nimmt täglich zur selben Ortszeit solche Infrarotbilder der Erde auf.

Das Video beginnt mit dem Äquinoktium im September 2010, als die Terminatorlinie senkrecht verlief. Während die Erde um die Sonne kreiste, kippte der Terminator, daher gelangte weniger Sonnenlicht zur Nordhalbkugel, was zum Winter im Norden führte. Im Laufe des Jahres und nach der Hälfte des Videos trat die Tagundnachtgleiche im März 2011 ein. Danach neigte sich die Schattenlinie in die andere Richtung, was zum Winter auf der Südhalbkugel führte – und zum Sommer im Norden.

Das aufgezeichnete Jahr endet mit der nächsten September-Tagundnachtgleiche am Ende einer von vielen Milliarden Reisen der Erde um die Sonne, die bereits stattfanden – und der noch viele weitere folgen werden.

Zur Originalseite

PDS 70: Scheibe, Planeten und Monde

Innerhalb der Staubscheibe um den Stern PDS 70 befindet sich der Planet PDS 70c mit einer Staubscheibe, in der vermutlich Monde entstehen.

Bildcredit: ALMA (ESO/NAOJ/NRAO); M. Benisty et al.

Beschreibung: Es ist nicht die große Scheibe, welche die Aufmerksamkeit auf sich zieht, obwohl die große Planeten bildende Scheibe um den Stern PDS 70 klar abgebildet und für sich genommen sehr interessant ist.

Es ist auch nicht der Planet rechts innerhalb der großen Scheibe, über den am meisten gesprochen wird, obwohl der Planet PDS 70c neu entstanden ist und interessanterweise eine ähnliche Größe und Masse besitzt wie Jupiter.

Es ist vielmehr der verschwommene Fleck um den Planeten PDS 70c, der die Aufregung hervorruft. Dieser verschwommene Fleck ist vermutlich ebenfalls eine staubhaltige Scheibe, aus der nun Monde entstehen. So etwas wurde noch nie zuvor beobachtet.

Das Bild wurde mit dem Atacama Large Millimeter Array (ALMA) in der hoch gelegenen Atacamawüste im Norden Chiles fotografiert, das aus 66 Radioteleskopen besteht. Aus den ALMA-Daten schließen die Astronominnen und Astronomen, dass der Radius der exoplanetaren Scheibe, aus der Monde entstehen, ähnlich groß ist wie der unserer Erdbahn, und dass eines Tages ungefähr drei erdmondgroße Monde entstehen könnten, die sich nicht wesentlich von den vier unseres Jupiters unterscheiden.

Zur Originalseite

Flug durch den Orionnebel in Infrarotlicht

Videocredit: NASA, Weltraumteleskop Spitzer, Universe of Learning; Visualisierung: F. Summers (STScI) et al.; Musik und Lizenz: Serenade für Streicher (A. Dvořák), Advent Chamber Orch.

Was sieht man bei einem Flug in den Orionnebel? Diese dynamische Visualisierung des Orionnebels entstand aus echten astronomischen Daten mit ausgefeilter Film-Rendering-Technik.

Das digital modellierte Video basiert auf Infrarotdaten des Weltraumteleskops Spitzer. Es zeigt eine berühmte Sternbildungsstätte aus nächster Nähe, die wir aus einer Entfernung von 1500 Lichtjahren sehen. Die Blickrichtung läuft ein Tal entlang, das in der Wand der riesigen Molekülwolke in der Region verläuft. Es ist ein Lichtjahr breit. Orions Tal endet in einer Höhlung, die von den energiereichen Winden und der Strahlung der massereichen Zentralsterne im Trapez-Sternhaufen geschaffen wurde.

Der ganze Orionnebel ist etwa 40 Lichtjahre groß und liegt im selben Spiralarm unserer Galaxis wie die Sonne.

Zur Originalseite

Tanzende Polarlichter auf Saturn

Die Raumsonde Cassini zeigt Saturn mit Polarlichtern in Infrarot.

Bildcredit: NASA, Cassini, VIMS Team, U. Arizona, U. Leicester, JPL, ASI

Beschreibung: Wie entstehen Polarlichter auf Saturn? Um das herauszufinden, durchstöberten Wissenschaftler*innen Hunderte von Saturns Infrarotbildern, die von der Raumsonde Cassini zu anderen Zwecken aufgenommen wurden, um genügend Bilder von Polarlichtern zu finden, anhand derer sie Veränderungen vergleichen und Filme erstellen konnten.

Einige dieser Filme zeigen deutlich, dass sich Polarlichter auf Saturn nicht nur mit dem Winkel der Sonneneinstrahlung verändern, sondern auch mit der Rotation des Planeten. Weiters hängen einige Veränderungen der Polarlichter anscheinend mit Wellen in Saturns Magnetosphäre zusammen, die wahrscheinlich von Saturnmonden verursacht werden.

Dieses Falschfarbenbild wurde 2007 aufgenommen. Es zeigt Saturn in drei Bändern des Infrarotlichtes. Die Ringe reflektieren relativ blaues Sonnenlicht, während der Planet in vergleichsweise energiearmem Rot leuchtet. Ein Band eines Südpolarlichtes leuchtet grün.

Kürzlich wurde festgestellt, dass Polarlichter Saturns obere Atmosphäre aufheizen. Wenn wir Saturns Polarlichter besser verstehen, führt das auch zu einem besseren Verständnis der Polarlichter auf der Erde.

Zur Originalseite

Die gekrümmten Magnetfelder von Centaurus A

Das Infrarot-Teleskop SOFIA zeigt die Magnetfeldlinien der Galaxie Centaurus A.

Bildcredit und Bildrechte: Optisch: Europäische Südsternwarte (ESO) Wide Field Imager; Submillimeter: Max-Planck-Institut für Radioastronomie/ESO/Atacama Pathfinder Experiment (APEX)/A.Weiss et al; Röntgen und Infrarot: NASA/Chandra/R. Kraft; JPL-Caltech/J. Keene; Text: Joan Schmelz (USRA)

Beschreibung: Wenn Galaxien kollidieren, was passiert dann mit ihren Magnetfeldern? Um das herauszufinden, richtete die NASA SOFIA in einer fliegenden 747 auf die galaktische Nachbarin Centaurus A, um die Emission von polarisiertem Staub zu beobachten, der Magnetfelder nachzeichnet.

Die ungewöhnliche Form von Cen A entstand beim Zusammenstoß zweier Galaxien mit Strahlen, die mit Gas gespeist werden, das in ein zentrales, sehr massereiches Schwarzes Loch strömt. Auf diesem Ergebnisbild wurden die von SOFIA ermittelten magnetischen Feldlinien über die Bilder von ESO (sichtbares Licht: weiß), APEX (Submillimeter: orange), Chandra (Röntgenstrahlung: blau) und Spitzer (Infrarot: rot) gelegt.

Es stellte sich heraus, dass die Magnetfelder an den Außenbereichen der Galaxie parallel zu den Staubbahnen verlaufen, aber in der Nähe des Zentrums verzerrt sind. Die Gravitationskräfte in der Nähe des Schwarzen Lochs beschleunigen die Ionen und verstärken das Magnetfeld.

Zusammenfassend lässt sich sagen, dass die Kollision nicht nur die Massen der Galaxien vereinigte, sondern auch ihre Magnetfelder verstärkte. Diese Ergebnisse liefern neue Erkenntnisse, wie sich Magnetfelder im frühen Universum entwickelten, als Verschmelzungen häufiger waren.

Zur Originalseite