Angeknabberte Sonne

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Padraic Koen, Adelaide, Südaustralien

Beschreibung: Die kleinste der drei partiellen Sonnenfinsternisse 2018 fand gestern statt, am Freitag, 13. Juli. Sie war großteils über dem offenen Meer zwischen Australien und der Antarktis sichtbar.

Dieses Videobild einer winzigen Kerbe in der Sonne wurde in Port Elliott (Südaustralien) mit einem H-alpha-Filter zur maximalen Verfinsterung an diesem Ort fotografiert. Dort bedeckte der Neumond etwa 0.16 Prozent der Sonnenscheibe. Die beste Verfinsterung, bei der etwa ein Drittel des Sonnendurchmessers vom Neumond abgedeckt wurde, war in der Ostantarktis in der Nähe von Peterson Bank zu sehen, die beste Sicht hatte wahrscheinlich die lokale Kaiserpinguinkolonie.

In dieser ergiebigen Finsternissaison bringt der nächste Vollmond am 27. Juli eine totale Mondfinsternis, gefolgt von einer weiteren partiellen Sonnenfinsternis zum nächsten Neumond am 11. August.

Zur Originalseite

Wenn Rosen nicht rot sind

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Eric Coles und Mel Helm

Beschreibung: Natürlich sind nicht alle Rosen rot, aber sie können trotzdem sehr hübsch sein. Der schöne Rosettennebel und andere Sternentstehungsgebiete werden in astronomischen Bildern oft überwiegend rot dargestellt, teils, weil die überwiegende Emission im Nebel von Wasserstoffatomen stammt.

Die stärkste optische Wasserstoffemissionslinie, bekannt als H-alpha, liegt im roten Spektralbereich, doch die Schönheit eines Emissionsnebels ist nicht nur im roten Licht zu bewundern. Andere Atome im Nebel werden ebenfalls durch energiereiches Sternenlicht angeregt und erzeugen schmale Emissionslinien.

Auf dieser prächtigen Ansicht des Rosettennebels werden Schmalbandbilder kombiniert, um die Emission von Schwefelatomen in Rot, Wasserstoff in Blau und Sauerstoff in Grün zu zeigen. Das Kartierungsschema dieser schmalen atomaren Emissionslinien in ein breiteres Farbspektrum wird bei vielen Hubblebildern von Sternenkrippen übernommen.

Der Rosettennebel befindet sich ungefähr 3000 Lichtjahre von uns entfernt im Sternbild Einhorn, in dieser Entfernung ist das Bild etwa 100 Lichtjahre breit. Um die Rosette rot zu färben, folgen Sie diesem Link oder bewegen Sie den Mauszeiger über das Bild.

Zur Originalseite

Von Sivan 2 zu M31

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: MDW Sky Survey (David Mittelman, Dennis di Cicco, Sean Walker)

Beschreibung: Dieses Teleskopmosaik von den Innengrenzen des Sternbildes Kassiopeia (links) zur Andromeda (rechts) zeigt mehr als 10 Grad vom Himmel des Planeten Erde. Die Bildfelder, aus denen die Himmelsszene erstellt wurde, sind Teil einer hoch aufgelösten astronomischen Durchmusterung der Milchstraße im H-alpha-Licht.

Die Bearbeitung der monochromatischen Bilddaten brachte die zarten Strukturen relativ unerforschter Fasern aus Wasserstoff in der Region nahe der Ebene unserer Milchstraße zum Vorschein. Der große, aber blasse und relativ unbekannte Nebel Sivan 2 liegt links oben. Die Andromedagalaxie M31 liegt rechts in der Mitte, die schwachen, alles durchdringenden Nebulositäten breiten sich im Vordergrund des weiten Sichtfeldes zu M31 aus. Das breite Durchmusterungsbild zeigt, dass die faszinierenden blassen Wasserstoffwolken, die kürzlich vom Astronomen Rogelio Bernal Andreo abgebildet wurden, tatsächlich innerhalb der Milchstraße liegen – in der Sichtlinie zur Andromedagalaxie.

Zur Originalseite

M82: Galaxie mit supergalaktischem Wind

Die irreguläre Zigarrengalaxie M82 verläuft hell diagonal durchs Bild. In der Mitte leuchten dunkelrote Nebel, die an den Rauch einer Explosion erinnern.

Bildcredit: NASA, ESA, das Hubble-Vermächtnisteam, (STScI/AURA); Danksagung: M. Mountain (STScI), P. Puxley (NSF), J. Gallagher (U. Wisconsin)

Was bringt die Zigarrengalaxie zum Leuchten? Die irreguläre Galaxie wird auch M82 genannt. Bei einer nahen Begegnung in der jüngeren Vergangenheit wurde sie mit der großen Spiralgalaxie M81 aufgemischt. Das erklärt jedoch nicht ganz die Quelle des ausströmenden Gases, das rot leuchtet. Es gibt Hinweise, dass dieses Gas durch die Teilchenwinde vieler Sterne hinausgetrieben wird. Die Sterne erzeugen gemeinsam einen galaktischen Superwind.

Dieses Fotomosaik zeigt eine spezielle Farbe des roten Lichts, das von ionisiertem Wasserstoff abgestrahlt wird. Viele Details der Filamente im Gas sind in diesem Licht sichtbar. Die Fasern sind länger als 10.000 Lichtjahre. Die Zigarrengalaxie ist 12 Millionen Lichtjahre entfernt. Im Infrarotlicht ist sie die hellste Galaxie am Himmel. In sichtbarem Licht ist sie mit einem kleinen Teleskop im Sternbild Große Bärin (Ursa Major) zu sehen.

Zur Originalseite

Die Wolken des Jägers Orion

Im Bild liegt das berühmte Sternbild Orion, links ist der Kopf, der Bogen ist nach oben gerichtet. Oben ist ein runder roter Nebel, rechts die halbkreisförmige rote Barnardschleife, in der Mitte schräg übereinander die blau leuchtenden Gürtelsterne.

Bildcredit und Bildrechte: Rogelio Bernal Andreo

Beschreibung: Die Sternentstehungsgebiete im Jäger Orion sind in kosmischen Staub und leuchtenden Wasserstoff eingebettet. Sie liegen am Rand riesiger Molekülwolken, die etwa 1500 Lichtjahre entfernt sind. Diese atemberaubende Aussicht ist etwa 30 Grad breit und zeigt das bekannte Sternbild von Kopf bis Fuß (von links nach rechts) und seine Umgebung. Der 1500 Lichtjahre entfernte Orionnebel, die nächstgelegene Sternbildungsregion, liegt rechts über der Mitte. Links davon befinden sich der Pferdekopfnebel, M78 und Orions Gürtelsterne. Wenn ihr den Mauspfeil über das Bild schiebt, seht ihr auch den roten Riesenstern Beteigeuze an der Schulter des Jägers, den hellen, blauen Rigel beim Fuß, darüber den von ihm beleuchteten Hexenkopfnebel sowie den leuchtenden Nebel um Lambda Orionis (Meissa) links bei Orions Kopf. Der Orionnebel und die hellen Sterne sind leicht mit bloßem Auge sichtbar, doch die Wolken und Emissionen des ausgedehnten interstellaren Gases in diesem nebelreichen Komplex sind zu blass, sie sind auch viel schwieriger zu fotografieren. Dieses Mosaik aus Breitband-Teleskopbildern wurde mit Bilddaten ergänzt, die mit einem Schmalband-H-alpha-Filter aufgenommen wurden, um die überall vorhandenen Ranken aus angeregtem atomarem Wasserstoff zu betonen, etwa im Bogen der riesigen Barnard-Schleife.

Zur Originalseite

Orange Sonne sprüht Funken

Das Bild der Sonne wurde invertiert und eingefärbt. Daher ist der orangefarbene Ball in der Mitte dunkler und am Rand sehr hell. Am Rand ragen helle Sonnenfackeln auf, in der Mitte und oben sind größere dunkle Regionen.

Bildcredit und Bildrechte: Alan Friedman (Averted Imagination)

Unsere Sonne ist neuerdings ziemlich unruhig. Erst vor zwei Wochen wurde sie fotografiert, als viele stürmische Regionen zu sehen waren. Eine davon war die aktive Sonnenfleckengruppe AR 2036 oben und AR 2038 in der Mitte. Vor erst vier Jahren endete ein ungewöhnlich ruhiges Minimum an Sonnenflecken. Es hatte vier Jahre gedauert.

Dieses Bild entstand in der speziellen Lichtfarbe H-Alpha. Es wurde umgekehrt und gefärbt. Spikulen bedecken die Sonnenvorderseite wie ein Teppich. Zum Rand hin wird die Sonne allmählich heller. Der Effekt entsteht durch die zunehmende Absorption des kühleren Sonnengases. Er wird als Randverdunkelung bezeichnet.

Mehrere faserartige Protuberanzen ragen über die Sonnenränder. An der Vorderseite der Sonne sind Protuberanzen als helle Schlieren zu sehen. Besonders interessant sind die magnetisch verhedderten aktiven Regionen. Dazu gehören relativ kühle Sonnenflecken, die hier als weiße Flecken dargestellt sind.

Ein Sonnenmaximum ist die aktivste Phase im magnetischen 11-Jahres-Zyklus. Beim aktuellen Maximum erzeugt das verworrene Magnetfeld viele „Sonnenfunken”. Dazu zählen ausbrechende Protuberanzen, Koronale Massenauswürfe und Fackeln. Sie stoßen Teilchenwolken aus. Diese können die Erde treffen und Polarlichter auslösen.

Vor zwei Jahren stieß eine Fackel eine Flut geladener Teilchen ins Sonnensystem. Sie war so heftig, dass sie Satelliten stören und Stromnetze gefährden hätten können, wenn sie den Planeten Erde getroffen hätte.

Aktuell: APOD-Vortrag am 17. Juni in Paris

Zur Originalseite

Sonne und Protuberanz

Links unten ragt die Sonne ins Bild, hinter dem Rand ist der Himmel schwarz. In der Bildmitte steigt eine riesige Protuberanz. Sie ist größer als die Erde, die zum Vergleich rechts oben eingeblendet ist.

Bildcredit und Bildrechte: jp-Brahic

Manchmal ragen dramatische Protuberanzen über den Sonnenrand. Das geschah auch letzte Woche. Die oben gezeigte große Protuberanz betonte die Sonne, die kürzlich äußerst aktiv war. Im Vordergrund ist die Chromosphäre ein wogendes Meer aus heißem Gas. Sie wurde in einer spezifischen Farbe des Lichts abgebildet, das von Wasserstoff abgestrahlt wird.

Eine Sonnenprotuberanz ist eine Wolke aus Sonnengas, das vom Magnetfeld der Sonne über der Oberfläche gehalten wird. Die Erde ist als Einschub dargestellt. Sie ist kleiner als die Protuberanz. Protuberanzen sind zwar sehr heiß. Trotzdem erscheinen üblicherweise dunkel, wenn sie vor der Sonne zu sehen sind, weil sie etwas kühler sind als die darunter liegende Photosphäre.

Eine ruhige Protuberanz bestehet meist etwa einen Monat lang. Sie kann als Koronaler Massenauswurf ausbrechen und heißes Gas ins Sonnensystem schleudern. Davon kann ein Teil die Erde treffen und Polarlichter auslösen.

Zur Originalseite

Doppelsternhaufen im Perseus

In der Mitte befindet sich der berühmte Doppelsternhaufen h und χ Persei, auch NGC 869 (rechts) und NGC 884. Im Hintergrund sind rote Wasserstoffwolken zwischen dicht gesäten Sternen verteilt.

Bildcredit und Bildrechte: Fabian Neyer

Dieses hübsche Sternenfeld ist etwa sieben Vollmonde breit (ca. 3,5 Grad). Es liegt im heroischen nördlichen Sternbild Perseus. Rechts neben der Mitte befinden sich h und χ Perseï. Sie sind ein berühmtes Paar offener oder galaktischer Sternhaufen.

Beide Haufen sind auch als NGC 869 (rechts) und NGC 884 katalogisiert. Sie sind ungefähr 7000 Lichtjahre entfernt und enthalten Sterne, die viel jünger und heißer sind als die Sonne. Die Haufen sind nur wenige Hundert Lichtjahre voneinander entfernt. Beide sind 13 Millionen Jahre jung. Das wurde am Alter ihrer Einzelsterne bestimmt. Das gleiche Alter gilt als Hinweis, dass sie in derselben Sternbildungsregion entstanden sind.

Der Doppelsternhaufen ist immer ein lohnenswerter Anblick im Fernglas. An dunklen Orten ist er sogar mit bloßem Auge sichtbar. Was man im Fernglas jedoch nicht sieht, aber häufig auf Teleskopbildern der Region dargestellt wird, sind blasse Wolken aus rötlichem ionisiertem Wasserstoff. Sie sind überall auf dieser außergewöhnlichen kosmischen Himmelslandschaft verteilt.

Das Bild ist ein Farbkomposit aus Schmalband-Daten, um die Emissionen der Wasserstoffwolken zu verstärken. Links oben befindet sich im weiten Sichtfeld NGC 957. Er ist noch ein kleinerer offener Sternhaufen. Sein Alter und seine Entfernung sind ähnlich. Möglicherweise steht er in Verbindung mit dem berühmten Doppelsternhaufen im Perseus.

Zur Originalseite