Terran 1 verbrennt Methalox

Aus 9 Raketendüsen strömt blaues Licht und breitet sich nach unten zu einem Abgasstrahl aus. Im Bild fallen Eistrümmer zu Boden.

Bildcredit: Relativity / John Kraus

Die Rakete Terran 1 von Relativity ist großteils 3-D-gedruckt. Sie verbrennt einen kryogenen Raketentreibstoff aus flüssigem Methan und flüssigem Sauerstoff (Methalox). Diese Nahaufnahme zeigt den Start von Terran 1 in der Nacht des 22. März von Cape Canaveral. Eisbrocken fallen herunter, aus neun Aeon-1-Triebwerken strömen intensiv blaue Abgase.

Bei dem großteils erfolgreichen Flug erreichte die innovative Rakete die Abschaltung des Haupttriebwerks und die Stufentrennung, schaffte es aber wegen einer Anomalie zu Beginn des Fluges mit der zweiten Stufe nicht in die Umlaufbahn.

Die Rakete Terran 1 war natürlich nicht für eine Reise zum Mars vorgesehen. Doch die Komponenten Methan und flüssiger Sauerstoff des Methalox-Treibstoffs können vollständig aus Rohstoffen des Roten Planeten hergestellt werden. Mit Methalox, das auf dem Mars hergestellt wird, könnten Raketen zum Planeten Erde zurückkehren.

Zur Originalseite

Rubins Galaxie

Die Galaxie in der Bildmitte ist schräg von oben zu sehen, sie ist von einigen Sternen umgeben, einige Spiralarme sind herausgezogen. Die Galaxie wirkt stark verzerrt.

Bildcredit: NASA, ESA, B. Holwerda (Universität von Louisville)

Die hellen, gezackten Sterne auf diesem Bild des Weltraumteleskops Hubble liegen im Vordergrund in unserer Milchstraße, und zwar im heroischen nördlichen Sternbild Perseus. Dahinter ist UGC 2885 scharf fokussiert, eine riesige, etwa 232 Millionen Lichtjahre entfernte Spiralgalaxie.

Ihr Durchmesser beträgt etwa 800.000 Lichtjahre, die Milchstraße misst im Vergleich dazu 100.000 Lichtjahre. Sie besitzt ungefähr eine Billion Sterne, das sind etwa 10-mal so viele Sterne wie in unserer Galaxis. UGC 2885 war Teil einer Untersuchung, die zeigen sollte, wie Galaxien zu einer so gewaltigen Größe anwachsen können.

Außerdem war UGC 2885 Gegenstand von „Eine interessante Reise“ und der Pionierstudie der Astronomin Vera Rubin zur Rotation von Spiralgalaxien. Ihre Arbeit war die erste, bei der die überwiegende Präsenz Dunkler Materie im Universum überzeugend belegt wurde.

Zur Originalseite

Olympus Mons, der größte Vulkan im Sonnensystem

In der Bildmitte liegt der Schildvulkan Olympus Mons, er ist der größte Vulkan im Sonnensystem. Die Marsoberfläche ist rötlichbraun, der Vulkan wirkt wie eine flache Flade mit einer goßen Vertiefung in der Mitte. Rund um den Krater am Gipfel befindet sich eine dunklere Region.

Bildcredit: ESA, DLR, FU Berlin, Mars Express; Bearbeitung und CC-Lizenz 2.0: Andrea Luck

Der größte Vulkan im Sonnensystem befindet sich auf dem Mars. Der Olympus Mons ist dreimal so hoch wie der Mount Everest auf der Erde. Trotzdem wäre er wegen der geringen Schwerkraft und der relativ flachen Hänge für Menschen nicht schwer zu besteigen.

Die Hänge des Olympus Mons bedecken einen Bereich, der größer ist als die gesamte hawaiianische Vulkankette. Sie haben ein Gefälle von meist nur wenigen Grad. Olympus Mons ist ein gewaltiger Schildvulkan, der vor langer Zeit aus flüssiger Lava entstand. Dank einer relativ statischen Oberflächenkruste konnte er sich mit der Zeit aufbauen. Sein letzter Ausbruch fand vermutlich vor etwa 25 Millionen Jahren statt.

Dieses Bild wurde von der Roboter-Raumsonde Mars Express der Europäischen Weltraumagentur ESA aufgenommen, die derzeit um den Roten Planeten kreist.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995, deutsch ab 2007)

Zur Originalseite

Der Radiobogen im galaktischen Zentrum

Rechts unten im Bild leuchtet ein helles orangefarbenes Objekt, von dem nach links oben wolkige, dunklere orangefarbene Strukturen verlaufen. Oben verlaufen von links unten nach rechts oben orangefarbene Bögen.

Bildcredit: Ian Heywood (Oxford U.), SARAO

Wie entsteht diese ungewöhnliche gekrümmte Struktur nahe dem Zentrum unserer Galaxis? Die langen, parallelen Strahlen, die schräg über dieses Radiobild verlaufen, sind kollektiv als die Radiobögen im galaktischen Zentrum bekannt. Sie ragen aus der galaktischen Ebene heraus.

Der Radiobogen ist mit dem galaktischen Zentrum durch seltsame, gekrümmte Filamente verbunden, die als Arches bekannt sind. Die helle Radiostruktur rechts unten umgibt ein Schwarzes Loch im galaktischen Zentrum, das als Sagittarius A* bekannt ist.

Eine Ursprungshypothese besagt, dass die Geometrie des Radiobogens und der Arches entsteht, weil sie heißes Plasma enthalten, das entlang der Linien eines konstanten Magnetfeldes fließt. Bilder des Röntgenobservatoriums Chandra der NASA zeigen anscheinend, wie dieses Plasma mit einer kalten Gaswolke in der Nähe kollidiert.

Zur Originalseite

Hubble zeigt den Ringnebel M57

Vor einem dunklen Hintergrund leuchtet ein Ring in Regenbogenfarben, der innen ein zart blau leuchtendes Zentrum hat.

Bildcredit: NASA, ESA, Hubble-Vermächtnisarchiv; Bearbeitung: Judy Schmidt

Er wurde vor Hunderten Jahren von Sternkundigen entdeckt, die seine ungewöhnliche Form nicht verstanden. Er sah aus wie ein Ring am Himmel. Nach Saturns Ringen ist der Ringnebel (M57) der vielleicht berühmteste Himmelsring. Heute kennen wir seine Natur und wissen, dass wir seine kultige Form unserer Perspektive verdanken.

Die aktuellste Kartierung der 3-D-Struktur des expandierenden Nebels basiert zum Teil auf diesem klaren Hubblebild. Sie führt zu der Vermutung, dass der Nebel ein relativ dichter, wulstähnlicher Ring ist, der sich um die Mitte einer leuchtenden Gaswolke in Form eines amerikanischen Footballs legt. Vom Planeten Erde aus blicken wir entlang der Achse des Footballs von oben auf den Ring.

Bei diesem gut untersuchten planetarischen Nebel stammt das leuchtende Material nicht von Planeten, sondern die gasförmige Hülle entstand aus den äußeren Schichten, die vom vergehenden, einst sonnenähnlichen Stern ausgestoßen werden. Dieser Stern ist nun ein winziger Lichtpunkt in der Mitte des Nebels. Das intensive Ultraviolettlicht des heißen Zentralsterns ionisiert die Atome im Gas.

Der Ringnebel ist ungefähr ein Lichtjahr groß und 2500 Lichtjahre entfernt.

Zur Originalseite

NGC 2442: Galaxie im Fliegenden Fisch

Im Bildfeld mit lose verstreuten, gezackten Sternen liegt in der Mitte eine S-förmige Balkenspiralgalaxie, links daneben eine kleinere, elliptisch wirkende Galaxie.

Bildcredit und Bildrechte: Nicolas Rolland, Martin Pugh

Die verzerrte Galaxie NGC 2442 ist etwa 50 Millionen Lichtjahre entfernt. Sie befindet sich im südlichen Sternbild Fliegender Fisch (Piscis Volans). Die beiden Spiralarme der Galaxie hängen an einem markanten Zentralbalken, daher wirkt sie auf diesem scharfen, farbenprächtigen Bild hakenförmig.

Die gezackten Sterne im Teleskopfeld liegen im Vordergrund. Das Bild zeigt auch die undurchsichtigen Staubbahnen der fernen Galaxie, ihre jungen blauen Sternhaufen und rötlichen Sternbildungsregionen. Diese umgeben einen gelblich leuchtenden Kern, dessen Licht hauptsächlich von einer älteren Sternpopulation stammt. Die Sternbildungsregionen befinden sich hauptsächlich an den herausgezogenen Spiralarmen rechts oben.

Die verzerrte Struktur ist wahrscheinlich das Ergebnis einer urzeitlichen engen Begegnung mit der kleineren Galaxie links oben. In der geschätzten Entfernung von NGC 2442 sind die beiden wechselwirkenden Galaxien ungefähr 150.000 Lichtjahre voneinander entfernt.

Zur Originalseite