Infraroter Orion von WISE

Dieses Bild des Orionnebels wirkt fremdartig, weil es in Infrarot aufgenommen wurde. Der Nebel wirkt stark gefasert, die markanten Staubwolken wurden hellbraun gefärbt und leuchten im Inneren rot.

Bildcredit: WISE, IRSA, NASA; Berarbeitung und Bildrechte: Francesco Antonucci

Der große Orionnebel ist ein faszinierender Ort. Mit bloßem Auge ist er ein kleiner, verschwommener Fleck im Sternbild Orion. Das Mosaik in Falschfarben entstand aus vier Einzelbildern. Sie wurden vom Observatorium WISE im Erdorbit in verschiedenen Wellenlängen von Infrarot aufgenommen. Es zeigt den Orionnebel als hektische Umgebung mit neu entstandenen Sternen, heißem Gas und dunklem Staub.

Die Energie in einem großen Teil des Orionnebels (M42) stammt von den Sternen des Trapez-Haufens. Sie liegen mitten in diesem Weitwinkelbild. Die hellen Sterne sind hier in ein orangefarbenes Leuchten gehüllt. Es ist ihr eigenes Sternenlicht, das von komplexen Staubfasern reflektiert wird. Die Staubfasern bedecken einen Großteil der Region.

Zum aktuellen Wolkenkomplex im Orionnebel gehört auch der Pferdekopfnebel. Er löst sich in den nächsten 100.000 Jahren langsam auf.

Zur Originalseite

W5: Säulen der Sternbildung

Die Region im Bild ist W5 oder der Seelenebel im Sternbild Cassiopeia. In der Mitte ist ein rot leuchtendes Herz, umgeben von beige-braunen Nebelfetzen. Sterne in der Höhle komprimierten wahrscheinlich das Gas im Nebel nach außen hin und lösten so neue Sternbildung aus. In den äußeren Nebelfetzen sind viele Säulen, in denen vielleicht gerade Sterne entstehen.

Bildcredit: WISE, IRSA, NASA; Bearbeitung und Bildrechte: Francesco Antonucci

Wie entstehen Sterne? Der NASA-Satellit Wide Field Infrared Survey Explorer (WISE) nahm Bilder der Sternbildungsregion W5 in Infrarot auf. Diese liefern klare Hinweise, dass massereiche Sterne mitten in leeren Höhlen älter sind als die Sterne am Rand. Wahrscheinliche lösen die älteren mittigen Sterne die Entstehung der jüngeren Sterne am Rand aus.

Die Sternbildung beginnt, wenn heißes Gas ausfließt und dabei kühleres Gas zu Knoten verdichtet. Diese Knoten werden bald dicht genug, dass sie durch Gravitation zu Sternen kollabieren. Das Infrarotbild wurde wissenschaftlich gefärbt. Nach der Erosion durch das heiße, ausfließende Gas bleiben Säulen zurück. Diese Säulen liefern weitere visuelle Hinweise.

W5 ist auch als IC 1848 bekannt. Der Nebel bildet zusammen mit IC 1805 eine komplexe Sternbildungsregion. Sie wird oft Herz- und Seele-Nebel genannt. Dieser Ausschnitt von W5 ist etwa 2000 Lichtjahre breit. Er enthält viele Sternbildungssäulen. W5 liegt etwa 6500 Lichtjahre entfernt im Sternbild Kassiopeia.

Zur Originalseite

Sterne und Staubsäulen in NGC 7822 von WISE

Rechts über der Bildmitte ist ein hell leuchtender Nebel. In großem Abstand verläuft am linken Bildrand bogenförmig eine Nebelfront. Im Bild sind helle junge Sterne, welche die Nebel anregen und erodieren.

Bildcredit: WISE, IRSA, NASA; Bearbeitung und Bildrechte: Francesco Antonucci

Heiße, junge Sterne und kosmische Säulen aus Gas und Staub drängen sich in NGC 7822. Die leuchtende Sternbildungsregion liegt am Rand einer gewaltigen Molekülwolke im nördlichen Sternbild Kepheus. Sie ist etwa 3000 Lichtjahre entfernt. Helle Ränder und komplexe Staubskulpturen prägen das Nebelinnere.

Der NASA-Satellit Wide Field Infrared Survey Explorer (WISE) nahm die detailreiche Himmelslandschaft im Infrarotlicht auf. Die Atome im Gas des Haufens leuchten, weil sie von der energiereichen Strahlung heißer Sterne angeregt werden. Die mächtigen Sternenwinde und ihr Licht formen und erodieren die dichten Säulen.

Im Inneren der Säulen könnten noch immer Sterne entstehen, wenn die Säulen durch Gravitation kollabieren. Sie werden jedoch abgetragen. So verlieren die entstehenden Sterne den Nachschub an Sternenstaub.

In der geschätzten Entfernung von NGC 7822 ist dieses Feld etwa 40 Lichtjahre breit.

Zur Originalseite

Sternbildung im Kaulquappennebel

Der Nebel im Bild erinnert an eine zu uns geöffnete Höhlung. In der Mitte sind zwei hell leuchtende Staubwülste, es sind die Kaulquappen IC 410. Der Emissionsnebel ist in den Sternhaufen NGC 1893 eingebettet.

Bildcredit: WISE, IRSA, NASA; Bearbeitung und Bildrechte: Francesco Antonucci

Der Kaulquappennebel IC 410 mit seiner staubhaltigen Emission liegt im nördlichen Sternbild Fuhrmann. Er ist etwa 12.000 Lichtjahre entfernt. Die Wolke aus leuchtendem Gas ist mehr als 100 Lichtjahre groß. Er wird von Sternwinden und der Strahlung des eingebetteten offenen Sternhaufens NGC 1893 geformt.

Die hellen Sterne im Haufen sind vor zirka 4 Millionen Jahren in der interstellaren Wolke entstanden. Sie sind überall im verteilt. Mitten im Bild ranken sich zwei markante, relativ dichte Materieströme, die an Kaulquappen erinnern. Die kosmischen Kaulquappen in IC 410 sind etwa 10 Lichtjahre lang. Möglicherweise entstehen darin neue Sterne. Dieses Bild wurde vom Satelliten Wide Field Imager Survey Explorer (WISE) der NASA im Infrarotlicht abgebildet.

Zur Originalseite

Infraroter Orion von WISE

In grün gefärbten Sternwolken leuchtet in der Mitte ein rötlicher Nebel um eine helle Lichtquelle. Das Bild ist in Falschfarben dargestellt.

Bildcredit: NASA, JPL-Caltech, UCLA

Der große Nebel im Orion ist ein faszinierender Ort. Mit bloßem Auge erscheint er als kleiner, verschwommener Fleck im Sternbild Orion.

Dieses Bild ist ein Falschfarbenkomposit. Es wurde mit dem WISE-Observatorium in der Erdumlaufbahn in vier Farben des infraroten Lichts aufgenommen. Der Orionnebel wird hier als betriebsamer Ort mit kürzlich entstandenen Sternen, heißem Gas und dunklem Staub gezeigt.

Die Energie für einen Großteil des Orionnebels (M42) liefern die Sterne im Trapez-Sternhaufen. Auf diesem Weitwinkelbild ist er in der Mitte zu sehen. Die hellen Sterne sind von einem unheimlichen grünen Leuchten umgeben. Es ist ihr eigenes Sternenlicht, das von komplexen Staubfasern reflektiert wird, die einen Großteil der Region bedecken.

Zum Wolkenkomplex um den Orionnebel gehört auch der Pferdekopfnebel. Die Molekülwolken werden in den nächsten 100.000 Jahren langsam verdampfen.

Zur Originalseite

RCW 86: Historischer Supernova-Überrest

Im Hintergrund leuchten rote Nebel, links oben ist ein schmaler, rechts unten ein kürzerer breiterer bogenförmiger grün leuchtender Nebel.

Bildcredit: Röntgen: XMM-Newton, Chandra / Infrarot: WISE, Spitzer

Im Jahr 185 n. Chr. verzeichneten chinesische Astronomen die Erscheinung eines Sterns in der Nanman-Sterngruppe. Dieser Teil des Himmels liegt auf modernen Sternkarten bei Alpha und Beta Centauri. Der neue Stern war monatelang sichtbar. Es ist vermutlich die erste Supernova der Geschichtsschreibung.

Dieses Kompositbild wurde in mehreren Wellenlängen erstellt. Es entstand mit Weltraumteleskopen des 21. Jahrhunderts. Die Röntgenteleskope XMM-Newton und Chandra sowie die Infrarotteleskope Spitzer und WISE zeigen den Supernovaüberrest RCW 86. Er wird als Überrest dieser Sternexplosion verstanden.

Das interstellare Gas auf der Falschfarbenansicht wird von der Stoßfront der expandierenden Supernova in Röntgenenergien (blau und grün) aufgeheizt. Interstellarer Staub mit kühleren Temperaturen leuchtet in infrarotem Licht (gelb und rot).

Der Überrest enthält große Mengen an Element Eisen, außerdem fehlt ein Neutronenstern oder Pulsar. Das lässt vermuten, dass die Supernova vom Typ Ia war. Typ Ia-Supernovae sind thermonukleare Explosionen, die weiße Zwergsterne zerstören, wenn diese in einem Doppelsternsystem Materie von einem Begleiter ansammeln.

Die Hülle strahlt Röntgenlicht ab. Die Stoßgeschwindigkeiten, die in der Hülle gemessen wurden, und die Infrarot-Temperaturen des Staubs lassen vermuten, dass sich der Überrest extrem schnell in einer Blase mit sehr geringer Dichte ausdehnt. Die Blase wurde vor der Explosion vom System des weißen Zwergs erzeugt.

RCW 86 liegt in der Nähe der Ebene unserer Milchstraße. Er ist etwa 8200 Lichtjahre entfernt und hat einen Radius von ungefähr 50 Lichtjahren.

Zur Originalseite

Asteroiden in der Nähe der Erde

Die Grafik zeigt links die neuen Abschätzungen von NEOWISE zur Häufigkeit mittelgroßer Asteroiden, rechts ist die alte Abschätzung aufgrund von Beobachtungen im sichtbaren Licht. In der Mitte ist die Sonne schematisch dargestellt, die Bahnen der inneren Planeten sind dünne weiße Linien, die Planeten selbst sind grüne Punkte, und die Asteroiden werden als rote Punkte schematisch dargestellt.

Illustrationscredit: NASA, JPL-Caltech, WISE

Diese Illustration zeigt Sonne und Planeten im inneren Sonnensystem. Jeder rote Punkt stellt einen Asteroiden dar. Die Himmelskörper sind nicht im korrekten Maßstab abgebildet,

Neue Ergebnisse von NEOWISE sind links zu sehen. NEOWISE ist der Teil der Mission WISE, der im Infrarotlicht nach Asteroiden sucht. Die neuen Ergebnisse links werden mit früheren Abschätzungen verglichen, was die Häufigkeit mittelgroßer oder größerer erdnaher Asteroiden aus Durchmusterungen in sichtbarem Licht betrifft.

Die gute Nachricht ist, dass es laut den neuen Abschätzungen aus den NEOWISE-Beobachtungen um 40 Prozent weniger erdnahe Asteroiden gibt, die größer als 100 Meter sind, als die Suche im sichtbaren Licht vermuten ließ. Die Ergebnisse von NEOWISE basieren auf Infrarotabbildungen. Sie sind auch genauer.

Gleich große Asteroiden, die von der Sonne aufgeheizt werden, strahlen die gleiche Menge an Infrarotlicht ab. Sie können aber sehr unterschiedliche Mengen an sichtbarem Sonnenlicht reflektieren, je nachdem, wie stark ihre Oberfläche reflektiert und wie hoch ihr Oberflächenalbedo ist. Dieser Effekt kann Durchmusterungen beeinflussen, die auf optischen Beobachtungen basieren.

Die Ergebnisse von NEOWISE reduzieren die geschätzte Anzahl der mittelgroßen erdnahen Asteroiden von etwa 35.000 auf 19.500. Doch der Großteil der Asteroiden ist immer noch unentdeckt.

Zur Originalseite

Der kälteste Braune Zwerg

Das Bild ist von blauen Lichtflecken übersät, in der Mitte ist ein kleiner Lichtpunkt mit einem Kreis markiert.

Bildcredit: NASA, JPL-Caltech, WISE

Beschreibung: Diese kosmische Momentaufnahme aus Bilddaten des NASA-Satelliten Wide-field Infrared Survey Explorer (WISE) zeigt eine Vielfalt blasser Sterne und ferner Galaxien im Sternbild Leier in Wellenlängen, die länger sind als sichtbares Licht. Aber das eingekreiste Objekt in der Mitte ist nicht wirklich ein Stern. Es ist als WISE 1828+2650 katalogisiert und nur 40 Lichtjahre von der Sonne entfernt. Derzeit ist es der kälteste Braune Zwerg, den wir kennen.

Ein Brauner Zwerg beginnt wie ein Stern mit dem gravitativen Kollaps dichter Gas- und Staubwolken, ist aber nicht massereich genug, um die Kerntemperatur und Dichte für eine Wasserstofffusion zu erreichen. Fusion ist die stabile Energiequelle eines Sterns. Stattdessen kühlt der gescheiterte Stern mit der Zeit aus und strahlt das meiste Licht in infraroten Wellenlängen ab. Interessanterweise sind Braune Zwerge nur etwa so groß wie der Planet Jupiter.

Wie kalt ist WISE 1828+2650? Während Braune Zwerge meist eine gemessene Oberflächentemperatur von bis zu 1400 Grad C (2600 Grad F) haben, hat dieser Braune Zwerg der Spektralklasse Y die geschätzte Temperatur eines warmen Raumes, also weniger als etwa 27 Grad Celsius.

Zur Originalseite