Aufgewühlte Wolken auf Jupiter

Wo ist das fehlende Ammoniak, das Juno in Jupiter hätte finden sollen? Vielleicht entsteht es durch flache Blitze, die im Zusammenhang mit musartigen Kugeln entstehen.

Bildcredit und Lizenz: NASA/JPL-Caltech/SwRI/MSSS; Bearbeitung: Kevin M. Gill

Beschreibung: Wo ist Jupiters Ammoniak? Man erwartete, dass die Raumsonde Juno in einer Umlaufbahn um Jupiter gasförmiges Ammoniak in seiner oberen Atmosphäre entdecken würde – doch in vielen Wolken ist fast keines vorhanden.

Aktuelle Daten von Juno liefern jedoch einige Hinweise: In manchen Wolken finden anscheinend in großer Höhe eine unerwartete Art elektrischer Entladungen statt, die man als seichte Blitze bezeichnen könnte. Für Blitze sind große Ladungstrennungen nötig, diese könnten durch kollidierende musartige Kugeln entstehen, die in aufsteigenden Gaswinden hochgehoben werden.

An diesen Muskugeln bleibt Ammoniak und Wasser kleben. Sie steigen auf, bis sie zu schwer werden – danach fallen sie tief in Jupiters Atmosphäre und schmelzen. Durch diesen Prozess kommt das Ammoniak, das offensichtlich in Jupiters oberer Atmosphäre fehlt, unten wieder zum Vorschein. Die aufgewühlten Wolken, die Juno abgebildet hat, sind nicht nur faszinierend komplex – es gibt auch einige hoch gelegene, helle plötzlich auftretende Wolken.

Wenn wir die Atmosphärendynamik auf Jupiter verstehen, bekommen wir auch wertvolle Einblicke in ähnliche Atmosphären- und Blitzphänomene, die auf unserer Erde auftreten.

Höhepunkt heute Nacht: Der Perseïden-Meteorstrom
Zur Originalseite

Europa und Jupiter von Voyager 1

1979 fotografierte die Raumsonde Voyager 1 den Planeten Jupiter und den großen Roten Fleck sowie seine Monde Io und Europa.

Bildcredit: NASA, Voyager 1, JPL, Caltech; Bearbeitung und Lizenz: Alexis Tranchandon / Solaris

Beschreibung: Was sind diese Flecken auf Jupiter? Der größte und am weitesten entfernte ist der Große Rote Fleck rechts neben der Mitte. Er ist ein riesiges Sturmsystem, das schon lange auf Jupiter wütet – vielleicht seit Giovanni Cassini ihn vor 355 Jahren wahrscheinlich bemerkte. Es ist noch nicht bekannt, warum dieser große Fleck rot ist.

Der Fleck links unten ist einer der größten Jupitermonde: Europa. Voyager-Bilder aus dem Jahr 1979 stützen die aktuelle Hypothese, dass Europa unter der Oberfläche einen Ozean besitzt und daher ein geeigneter Ort ist, um nach außerirdischem Leben zu suchen.

Doch was ist der dunkle Fleck rechts oben? Das ist ein Schatten eines anderen großen Jupitermondes: Io. Voyager 1 fand heraus, dass Ios Vulkanismus so aktiv ist, dass der Mond keine Einschlagkrater besitzt.

Sechzehn Bilder vom Vorbeiflug der Raumsonde Voyager 1 an Jupiter im Jahr 1979 wurden kürzlich neu bearbeitet und zu diesem Bild kombiniert. Vor etwa 43 Jahren verließ Voyager 1 die Erde und brach zu einer der bisher größten Forschungsreisen des Sonnensystems auf.

Kostenlos herunterladen: Voyager-Plakate

Zur Originalseite

Eine Wasserhose in Florida

Eine Wasserhose über Tampa Bay in der Wirbelsturm-Region Florida

Bildcredit und Bildrechte: Joey Mole

Beschreibung: Was passiert über dem Wasser? Dieses ist eines der besseren Bilder einer Wasserhose, die je fotografiert wurden. Es ist eine Art Wirbelsturm, der über Wasser auftritt.

Wasserhosen sind rotierende Säulen aus aufsteigender feuchter Luft, die typischerweise über warmem Wasser entstehen. Manche Wasserhosen sind so gefährlich wie Tornados und erreichen Windgeschwindigkeiten von mehr als 200 Kilometern pro Stunde. Wasserhosen können fern von Gewittern oder sogar bei relativ schönem Wetter entstehen. Es gibt Wasserhosen, die relativ durchsichtig sind, sodass man sie anfangs nur durch ein ungewöhnliches Muster erkennt, das sie auf der Wasseroberfläche hervorrufen.

Dieses Bild wurde im Juli 2013 in der Nähe von Tampa Bay in Florida fotografiert. Der Atlantische Ozean vor der Küste von Florida ist wohl die aktivste Region der Welt für Wasserhosen, jedes Jahr entstehen hier Hunderte davon.

Expertendiskussion: Wie entdeckt die Menschheit erstmals außerirdisches Leben?
Zur Originalseite

Nur ein weiterer Tag auf der Aerosol-Erde

Karte der weltweiten Verteilungen von Aerosolen in der Atmosphäre; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit für die Visualisierung des Modells: NASA Earth Observatory, GEOS FP, Joshua Stevens

Beschreibung: Es war nur ein weiterer Tag auf der Aerosol-Erde. Diese eindrucksvolle Visualisierung zeigt die Erfassung und weltweite Verteilung von Aerosolen am 23. August 2018 in der Erdatmosphäre. Aerosole sind winzige feste Teilchen und Flüssigkeitströpfchen.

Das in Echtzeit erstellte Modell des Goddard Earth Observing System Forward Processing (GEOS FP) beruht auf einer Kombination aus Daten von Erdbeobachtungssatelliten und bodenbasierenden Daten, um das Vorhandensein und die Arten von Aerosolen zu berechnen, während sie über dem ganzen Planeten zirkulieren.

Dieses Modell vom 23. August zeigt schwarze Kohlenstoffteilchen von Verbrennungsprozessen in Rot, die sich über große Landstriche von Nordamerika und Afrika verteilen – zum Beispiel den Rauch der Feuer in den Vereinigten Staaten und Kanada. Meersalz-Aerosole sind blau dargestellt und wirbeln über bedrohlichen Wirbelstürmen in der Nähe von Südkorea und Japan sowie in dem Wirbelsturm, der vor Hawaii anbahnt. Der Staub, der über afrikanischen und asiatischen Wüsten geweht wird, ist in violetten Farbtönen abgebildet. Die Lage von Städten ist an der Konzentration von Lichtern erkennbar, die auf Satellitenbilddaten der Erde bei Nacht basieren.

Zur Originalseite

Ein ausgedehntes Sturmsystem auf Saturn

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Cassini Imaging Team, SSI, JPL, ESA, NASA

Beschreibung: Es war eines der größten und langlebigsten Sturmsysteme, die je in unserem Sonnensystem registriert wurden. Diese Wolkenformation war erstmals Ende 2010 auf Saturns Nordhalbkugel zu beobachten, sie war zu Beginn größer als die Erde und umfasste bald den ganzen Planeten. Der Sturm wurde nicht nur von der Erde aus beobachtet, sondern auch aus der Nähe – von der Roboter-Raumsonde Cassini, die damals um Saturn kreiste.

Hier ist eine Infrarot-Abbildung in Falschfarben vom Februar 2011. Orange Farbtöne zeigen Wolken tief in der Atmosphäre, helle Farben zeigen höher liegende Wolken. Saturns Ringe sind fast von der Kante zu sehen – als dünne, blaue, waagrechte Linie. Die gekrümmten dunklen Bänder sind die Schatten der Ringe, die von Sonne von links oben auf die Wolkenoberflächen geworfen werden.

Der heftige Sturm war eine Quelle für Radiorauschen, das von Blitzen stammte. Man vermutet, dass er mit jahreszeitlichen Veränderungen einherging, als im Norden Saturns der Frühling begann. Nachdem er über sechs Monate lang gewütet hatte, umkreiste der kultige Sturm den ganzen Planeten und versuchte, sich in den eigenen Schwanz zu beißen – was überraschenderweise zu seinem Abebben führte.

Zur Originalseite

Perijovum 11 – an Jupiter vorbei


Videocredit und -rechte: NASA, Juno, SwRI, MSSS, Gerald Eichstadt; Musik: Mondscheinsonate (Ludwig van Beethoven)

Beschreibung: Hier kommt Jupiter! Die robotische NASA-Raumsonde Juno setzt ihre 53-tägigen stark elliptischen Bahnen um den größten Planeten unseres Sonnensystems fort. Dieses Video stammt von Perijovum 11 Anfang 2018, als Juno zum elften Mal seit ihrer Ankunft Mitte 2016 nahe an Jupiter vorbeiflog.

Dieser farbverstärkte Zeitrafferfilm umfasst etwa vier Stunden und wechselt zwischen 36 Bildern der JunoCam. Das Video beginnt mit Jupiters Aufgang, als sich Juno vom Norden her nähert. Als Juno ihre nächstmögliche Ansicht erreicht – ungefähr 3500 Kilometer über Jupiters Wolkenoberflächen – zeigt die Raumsonde den gewaltigen Planeten ungeheuer detailreich. Juno passiert helle Zonen und dunkle Wolkengürtel, die den Planeten umschließen, sowie zahlreiche wirbelnde kreisrunde Stürme, viele davon größer als Wirbelstürme auf der Erde.

Nach dem Perijovum verschwindet Jupiter in der Ferne und zeigt nun die ungewöhnlichen Wolken, die über Jupiters Süden auftreten. Um die erwünschten wissenschaftlichen Daten zu erhalten, zischt Juno so nahe an Jupiter vorbei, dass ihre Instrumente sehr hohen Strahlungsdosen ausgesetzt sind.

Zur Originalseite

Der Schlund auf Jupiter

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, Juno, SwRI, MSSS; Bearbeitung und Lizenz: Gerald Eichstädt und Sean Doran

Beschreibung: Was ist dieser schwarze Fleck auf Jupiter? Niemand weiß es. Während dem letzten nahen Vorbeiflug der NASA-Robotersonde Juno an Jupiter fotografierte sie eine recht dunkle Wolkenform, die informell der Schlund genannt wurde.

Die umgebenden Wolkenmuster zeigen, dass der Schlund im Zentrum eines Wirbels liegt. Da dunkle Strukturen in Jupiters Atmosphäre tiefer hinabreichen als helle, könnte der Schlund tatsächlich ein tiefes Loch sein – so sieht er auch aus, doch ohne weitere Hinweise bleibt das eine reine Vermutung. Der Schlund ist von einem Komplex aus mäandernden Wolken und anderen wirbelnden Sturmsystemen umgeben, manche davon sind von hellen Wolken bedeckt, die hoch hinaufreichen.

Dieses Bild wurde letzten Monat bei Junos Passage ungefähr 15.000 Kilometer über Jupiters Wolkenoberflächen fotografiert. Junos nächster naher Vorbeiflug an Jupiter findet im Juli statt.

Zur Originalseite

Schwimmen auf Jupiter

In den malerischen Wolkenwirbeln auf Jupiter folgt die Raumsonde Juno einer Wolke, die wie ein Delfin aussieht.

Bildcredit: NASA, JPL-Caltech, SwRI, MSSS; Bearbeitung: Brian Swift, Sean Doran

Am 29. Oktober wagte sich die Raumsonde Juno wieder einmal an die Oberflächen von Jupiters turbulenten Wolken heran. Bei diesem 16. Perijovium-Durchgang näherte sich Juno der größten Atmosphäre eines Planeten im Sonnensystem bis auf 3500 km.

Diese Bilder entstanden mit der JunoCam. Die Raumsonde flog 20 – 50.000 Kilometer über den mittleren südlichen Breiten des Planeten. Sie folgte scheinbar einem Wolkenwirbel, der auffällig wie ein Delfin aussieht. Der Delfin schwimmt Jupiters dunklen, gemäßigten südsüdlichen Gürtel entlang. Er ist selbst so groß wie ein Planet. Seine Länge beträgt einige Tausend Kilometer.

Am 21. Dezember ist Junos nächster Perijovium-Durchgang.

Zur Originalseite