Polarlichter auf Jupiter

Bildfüllend ist der Planet Jupiter dargestellt. Die lebhaften Wolkenbänder sind detailreich abgebildet, rechts unten ist der große Rote Fleck. Oben leuchtet ein blaues Polarlicht.

Bildcredit: NASA, ESA, Hubble

Jupiter hat Polarlichter. Wie auf der Erde spielt das Magnetfeld des Gasriesen eine Rolle. Es lenkt geladene Teilchen der Sonne zu den Polen. Wenn diese Teilchen auf die Atmosphäre treffen, schlagen sie vorübergehend Elektronen aus den Gasmolekülen. Elektromagnetische Kräfte ziehen diese Elektronen zurück. Wenn die Elektronen rekombinieren, bilden sie mit den Atomkernen wieder neutrale Atome und Moleküle. Dabei entsteht ein Polarlicht.

Das Kompositbild wurde kürzlich veröffentlicht. Es entstand mit dem Weltraumteleskop Hubble und zeigt die Polarlichter im UV-Licht. Sie verlaufen in ringförmigen Schichten um den Pol. Anders als Polarlichter auf der Erde bilden Jupiters Polarlichter mehrere helle Streifen und Flecken. Der große Rote Fleck ist rechts unten zu sehen.

Kürzlich traten bei Jupiter besonders starke Polarlichter auf. Zum Glück geschah das letzte Woche, als die NASA-Raumsonde Juno bei Jupiter ankam. Juno beobachtete den Sonnenwind, als sie sich Jupiter näherte. Das führt dazu, dass wir alle Polarlichter besser verstehen, auch auf der Erde.

Zur Originalseite

Vorschau auf die Juno-Mission

Videocredit: NASA, JPL, Mission Juno

Was findet die Raumsonde Juno der NASA, wenn sie nächsten Montag Jupiter erreicht? Sehr wenig, falls Juno das Einschwenken in die Umlaufbahn um Jupiter misslingt. Es ist eine Serie komplexer Abläufe. Sie finden in einer unbekannten Umgebung knapp über der Oberfläche von Jupiters Wolken statt. Wenn die Sache gelingt, schwirrt Juno um Jupiter, wie dieses Video zeigt. Sie kommt ihm näher als je eine Raumsonde zuvor.

Wenn Juno abgebremst hat, tritt sie in einen stark elliptischen Orbit ein und nimmt den wissenschaftlichen Betrieb auf. Der soll zwei Jahre dauern. Juno soll unter anderem Jupiters Tiefenstrukuren kartieren, die Menge an Wasser in Jupiters Atmosphäre messen, sein mächtiges Magnetfeld erforschen und herausfinden, wie die Polarlichter an Jupiters Polen entstehen. Diese Lektionen versprechen auch, dass wir die Geschichte des Sonnensystems und die Dynamik der Erde besser verstehen.

Junos Energie stammt hauptsächlich von drei großen Solarpaneelen. Jedes davon ist so lang wie ein Lieferwagen. Die Sonde startete 2011. Die Mission führt Juno plangemäß 37 Mal um den jovialen Riesen. Damit der Jupitermond Europa nicht mit Mikroben kontaminiert wird, lenkt man die Sonde nach Ende der Mission in Jupiters dichte Atmosphäre. Dort zerbricht sie und schmilzt.

Zur Originalseite

Jupiters Wolken von New Horizons

Die Raumsonde New Horizons fotografierte dieses Bild von Jupiter bei ihrem Vorbeiflug an dem Gasriesen. Das Bild zeigt die Wolkenstrukturen nahe am Terminator.

Bildcredit: NASA, Johns Hopkins U. APL, SWRI

Die Raumsonde New Horizons fotografierte auf ihrem Weg zu Pluto einige fantastische Bilder von Jupiter. Der Planet ist für seinen Roten Fleck berühmt. Um Jupiters Äquator verlaufen regelmäßige Wolkenbänder, die man sogar mit relativ kleinen Teleskopen sieht. Das Bild wurde waagrecht verzerrt. Es entstand 2007 nahe bei Jupiters Terminator. Man sieht die große Vielfalt an Wolkenmustern auf dem Gasriesen.

Die Wolken links sind nahe bei Jupiters Südpol. Dort befinden sich turbulente Strudel und Wirbel in einer dunklen Region, die man als Gürtel bezeichnet. Sie laufen um den ganzen Planeten. Die hellen Regionen sind sogenannte Zonen. Sie enthalten riesige Strukturen mit komplexen Wellenmustern. Die Energie für diese Wellen kommt sicherlich von unten.

New Horizons ist die schnellste Raumsonde, die je auf den Weg gebracht wurde. Sie führte 2015 erfolgreich ihren Vorbeiflug an Pluto durch. Nun ist sie auf Kurs zu einem Vorbeiflug an einem Objekt im Kuipergürtel. Es hat die Bezeichnung 2014 MU69 2019. Derzeit warten viele interessiert auf Junos Ankunft bei Jupiter am nächsten Montag.

APOD als Poster: PDF oder JPG

Zur Originalseite

Neon-Saturn

Saturn wurde von der Raumsonde Cassini in mehreren Farben von Infrarot aufgenommen. Diese Aufnahmen sind in Falschfarben dargestellt. Optisch leuchtet Saturn wie eine Neonreklame.

Bildcredit: VIMS Team, U. Arizona, ESA, NASA

In einem gewissen Licht leuchtet Saturn wie ein Neonschild. Dieses Kompositbild zeigt drei Infrarot-Frequenzbereiche in Falschfarben. Saturn hat zwar einen relativ geringen Anteil an dem Element Neon. Doch die Details des beringten Gasriesen erinnern hier an ein Leuchtschild.

Das bläulichste Band von Infrarotlicht ist oben in Falschfarben-Blau gezeigt. In diesem Licht erscheint Saturn dunkel, doch die dünnen Saturnringe reflektieren stark das Licht der Sonne. Saturns B-Ring ist so dick, dass nur wenig reflektiertes Licht durchkommt. Daher erscheint er als dunkler Bereich zwischen Saturns A- und C-Ring.

Der röteste Infrarotbereich ist oben in Falschfarben-Rot gezeigt. In diesem Licht strahlt Saturn ein überraschend detailreiches thermisches Leuchten ab. Es zeigt Bänder aus riesigen orkanartigen Stürmen, die um den ganzen Planeten verlaufen. Am Nordpol ist in dieser Farbe ein rätselhaftes sechseckiges Wolkensystem erkennbar. Das mittlere Infrarotband ist in Falschfarbengrün dargestellt. In diesem Licht reflektiert Saturns Atmosphäre stark, wenn sie von der Sonne beleuchtet wird.

Das Bild wurde 2007 von der Roboter-Raumsonde Cassini aufgenommen. Sie kreist in einer Distanz von ungefähr 1,6 Millionen Kilometern um Saturn.

Zur Originalseite

Jupiter 2015

Die Bilder zeigen die Wolkenoberflächen von Jupiter im Lauf von 10 Stunden. Die Aufnahmen entstanden mit dem Weltraumteleskop Hubble.

Bildcredit: NASA, ESA, Amy Simon (GSFC), Michael Wong (UC Berkeley), Glenn Orton (JPL-Caltech)

Hier könnt ihr zwei interessante globale Karten von Jupiters gebänderten Wolkenoberflächen vergleichen. Sie entstand aus Bilddaten des Weltraumteleskops Hubble. Schiebt einfach den Mauspfeil über die scharfe Projektion oder klickt stattdessen hier.

Beide Projektionen des ganzen Planeten wurden am 19. Jänner schrittweise fotografiert, während der größte Gasriese 10 Stunden rotierte. Es sind die ersten Bilder einer geplanten Serie jährlicher Porträts. Sie werden im Rahmen des Programms „Archiv der Atmosphären äußerer Planeten“ gesammelt. Beim Vergleich kann man Wolkenbewegungen und Windgeschwindigkeiten in der dynamischen Atmosphäre des Planeten messen.

Der große Rote Fleck ist sein berühmter langlebiger Wirbelsturm. Darin treten Windgeschwindigkeiten von 500 Kilometern pro Stunde auf. Innen rotiert eine gekrümmte Faser. Die Bilder zeigen, dass der Rote Fleck weiterhin schrumpft. Er ist jedoch immer noch größer als der Planet Erde. Rechts darunter posiert das Oval BA. Es ist auch als Kleiner Roter Fleck bekannt.

Zur Originalseite

Vollmond, Vollerde

Der Mond ist voll beleuchtet und vor der Erde gelegen, die ebenfalls voll beleuchtet ist. Der Trabant wirkt ungewöhnlich, nur links oben ist ein dunkler Fleck zu sehen. Das Bild zeigt die Rückseite, die wir von der Erde aus nicht sehen.

Bildcredit: NASA, NOAA/DSCOVR

Am 16. Juli war der Mond neu. Seine vertraute Vorderseite, die zum Planeten Erde zeigt, lag im Schatten. Doch an diesem Tag fotografierte die Earth Polychromatic Imaging Camera (EPIC) der Raumsonde Deep Space Climate Observatory (DSCOVR) dieses Bild.

Der offenbar volle Mond wandert hier über die volle Erde. Die Sonde war 1,6 Millionen Kilometer entfernt. Die voll beleuchtete Mondhalbkugel, die an der Position der Raumsonde zu sehen war, ist die weniger vertraute erdabgewandte Seite. Die Sonde befindet sich außerhalb der Mondbahn zwischen Erde und Sonne.

Die Rückseite des Mondes ist erst seit Beginn des Weltraumzeitalters bekannt. Sie ist fast frei von dunklen Mondmeeren, die auf der Halbkugel des Mondes sichtbar sind, die immer zur Erde gerichtet ist. Nur der kleine dunkle Fleck des Mare Moscoviense (Moskauer Meer) auf der Rückseite ist links oben deutlich erkennbar. Der Nordpol des Planeten Erde liegt bei 11 Uhr. Der Kontinent Nordamerika wird gerade vom Wirbelsturm Dolores besucht. Er liegt etwa in der Mitte.

Der Mondrand hat leichte Farbränder. Sie entstehen, weil sich der Mond im Bildfeld bewegt. Die Einzelbilder der Kamera wurden nämlich kurz nacheinander mit verschiedenen Farbfiltern aufgenommen und dann kombiniert.

Die Raumsonde DSCOVR beobachtet Erde und Sonnenwind. Damit kann man das Weltraumwetter vorhersagen. Etwa zweimal im Jahr sind ähnliche Bilder von Mond und Erde möglich, wenn die Sonde die Ebene der Mondbahn kreuzt.

Zur Originalseite

Jupiter, Ganymed und der Große Rote Fleck

Links neben dem voll beleuchteten Jupiter schwebt der Mond Ganymed. Auf Jupiter zeichnen sich zwei markante braune Wolkenbänder zwischen beigen Wolken ab. In einem davon befindet sich der Rote Fleck links neben der Mitte.

Bildcredit und Bildrechte: Damian Peach/SEN

Ganymed ist der größte Mond im Sonnensystem. Er posiert auf diesem scharfen Schnappschuss neben Jupiter, dem größten Planeten. Das Szenario wurde am 10. März mit einem kleinen Teleskop auf der Erde fotografiert. Es zeigt auch Jupiters großen Roten Fleck. Er ist der größte Sturm im Sonnensystem.

Ganymed hat einen Durchmesser von etwa 5260 Kilometern. Damit schlägt er die drei anderen galileischen Begleiter und sogar den Saturnmond Titan. Dieser ist 5150 Kilometer groß. Der Erdmond hat einen Durchmesser von 3480 Kilometern.

Der Große Rote Fleck schrumpfte zwar in jüngster Zeit. Doch er ist immer noch ungefähr 16.500 Kilometer groß. Jupiter ist der größte Gasriese im Sonnensystem. Sein Äquatordurchmesser beträgt ca. 143.000 Kilometer. Das ist fast ein Zehntel vom Durchmesser der Sonne.

Zur Originalseite

Ein Staubteufel auf dem Mars

Über die grobe, rotbaune Marsoberfläche wirbelt ein weißer Staubteufel. Er wirft einen Schatten nach rechts.

Bildcredit: HiRISE, MRO, LPL (U. Arizona), NASA

Als der Frühling im Norden des Mars zu Ende ging, spionierte die HiRISE-Kamera an Bord des Mars Reconnaissance Orbiter diesen Einheimischen aus. Der wirbelnde Staubteufel zog 2012 über die flache, staubbedeckte Amazonis Planitia. Sein Kern hat einen Durchmesser von ungefähr 140 Metern.

In einer Staubfahne wirbelt er Staub in die dünne Marsatmosphäre hoch. Sie reicht etwa 20 Kilometer nach oben. Staubteufel kommen in dieser Region auf dem Mars häufig vor. Sie entstehen, wenn die Oberfläche von der Sonne erwärmt wird und warme Luftströme aufsteigen und anfangen zu rotieren. Bei Staubteufeln auf anderen HiRISE-Bildern wurden bei der Windgeschwindigkeit Spitzen von bis zu 110 km/h beobachtet.

Zur Originalseite