Aktive Sonne während der totalen Sonnenfinsternis

Mitten im Bild ist eine gelbe Kugel mit weißen und dunklen Strukturen, sie ist von weißen Schlieren umgeben, die in einen dunklen Kreis verlaufen. Außerhalb des dunklen Kreises sind lange Streifen und Strahlen der Sonnenkorona.

Bildcredit und Bildrechte: D. Seaton (ROB) und J. M. Pasachoff (Williams-College Sonnenfinsternis-Expedition), NRL, ESA, NASA, NatGeo

Manchmal bietet eine totale Sonnenfinsternis eine Gelegenheit für ein besonderes Bild. Die Sonnenfinsternis zu Beginn des Monats wurde von mehreren Observatorien aufgenommen. Das innerste Bild zeigt die Sonne in Ultraviolettlicht. Es wurde mit dem Instrument SWAP aufgenommen. SWAP befindet an Bord der Mission Proba-2 in einem niedrigen sonnensynchronen Erdorbit.

Das Bild ist von einem Finsternisbild umgeben, das auf der Erde fotografiert und in Blau wiedergegebenen wurde. Es wurde in Gabun fotografiert. Weiter außen ist eine kreisrund abgedeckte Region, mit der die Sonnenmitte künstlich abgedunkelt wird. Sie wurde vom Instrument LASCO an Bord der Raumsonde SOHO in einem Sonnenorbit aufgenommen. Das äußerste Bild zeigt die ausfließende Sonnenkorona. Die Aufnahme entstand zehn Minuten nach der Finsternis mit LASCO.

In den letzten Wochen zeigte unsere Sonne ungewöhnlich viele Sonnenflecken, koronale Massenauswürfe und Sonneneruptionen. Diese Aktivität war zu erwarten, da die Sonnenaktivität gerade ein Maximum erreicht. Das ist der aktivste Teil ihres 11-jährigen Sonnenzyklus. Das Ergebnisbild ist eine interessante Montage mehrerer Sonnenschichten. Man kann damit aktive Regionen in oder nahe der Sonnenoberfläche besser mit den ausströmenden Strahlen in der Sonnenkorona vergleichen.

Zur Originalseite

Infrarotporträt der Großen Magellanschen Wolke

Das Infrarotbild zeigt die Große Magellansche Wolke in Falschfarben. Das Bild betont Staubwolken, die in sichtbarem Licht undurchdringlich sind.

Bildcredit: ESA / NASA / JPL-Caltech / STScI

Kosmische Staubwolken kräuseln dieses Infrarotporträt der Begleitgalaxie unserer Milchstraße, der Großen Magellanschen Wolke. Das Kompositbild des Weltraumteleskops Herschel und des Weltraumteleskops Spitzer zeigt, dass die benachbarte Zwerggalaxie voller Staubwolken ist, ähnlich wie der Staub in der Ebene der Milchstraße.

Die Staubtemperaturen zeigen Anzeichen von Sternbildungsaktivität. Die Daten von Spitzer in blauen Farbtönen zeigen warmen Staub, der von jungen Sternen aufgeheizt wird. Herschels Instrumente steuerten die in Rot und Grün gezeigten Bilddaten bei. Sie bilden Staubemissionen von kühleren, dazwischenliegenden Regionen ab. Dort beginnt die Sternbildung gerade, oder sie hat bereits aufgehört.

Die Erscheinung der Großen Magellanschen Wolke in Infrarot wird von Staubemissionen bestimmt. Sie unterscheidet sich von Bildern in sichtbarem Licht. Doch der bekannte Tarantelnebel in der Galaxie sticht immer noch hervor. Er ist die hellste Region links neben der Bildmitte und leicht erkennbar.

Die große Wolke Magellans ist etwa 160.000 Lichtjahre entfernt. Sie hat einen Durchmesser von ungefähr 30.000 Lichtjahren.

Zur Originalseite

Herschels Andromeda

Die Galaxie im Bild wirkt fremdartig, weil nicht ihre Sterne gezeigt werden, sondern der Staub, der normalerweise dunkel ist. Um einen Kern verlaufen gewundene, orangefarben und gelb leuchtende Ranken.

Bildcredit: ESA/Herschel/PACS und SPIRE-Arbeitsgemeinschaft, O. Krause, HSC, H. Linz

Diese Infrarotansicht des Weltraumteleskops Herschel erforscht die Andromedagalaxie, die unserer Milchstraße nächstgelegene große Spiralgalaxie. Das berühmte Inseluniversum ist nur 2,5 Millionen Lichtjahre entfernt. In der Astronomie ist es auch als M31 bekannt.

Andromeda ist mehr als 200.000 Lichtjahre breit. Sie ist also mehr als doppelt so groß wie die Milchstraße. Die Bilddaten wurden in Falschfarben dargestellt. Sie markieren die kühlen Staubbahnen und Staubwolken, die im Infrarotlicht leuchten. Diese sind in sichtbaren Wellenlängen dunkel und undurchsichtig.

Rote Farbtöne im Außenbereich der Galaxie zeigen das Leuchten von Staub, der von Sternenlicht wenige zig Grad über den absoluten Nullpunkt erwärmt wurde. Blaue Farben gehen mit wärmerem Staub einher, der von Sternen im dicht gefüllten zentralen Kern aufgewärmt wird. Der Staub ist auch eine Markierungssubstanz für molekulares Gas. Er zeigt den gewaltigen Vorrat an Rohmaterial für künftige Sternbildung in Andromeda.

Zur Originalseite

NuSTAR-Röntgenteleskop gestartet

Die Grafik zeigt den Aufbau und die Funktion von NuSTAR. Links ist die Fokusebene mit den Detektoren sowie das Solarpaneel. Rechts ist die Optik des Röntgenteleskops. Die beiden Teile sind mit einem leichten Mast miteinander verbunden.

Illustrationscredit und Bildrechte: Fiona Harrison et al., Caltech, NASA

Was bleibt übrig, wenn ein Stern explodiert? Um das herauszufinden, startete die NASA letzte Woche NuSTAR – das Nuclear Spectroscopic Telescope Array – in den Erdorbit. NuSTAR fokussiert harte Röntgenstrahlen, die von Atomkernen abgestrahlt werden.

Mit NuSTAR werden unter anderem die Umgebungen von Supernovaüberresten untersucht. Man erforscht, warum diese Supernovae explodierten, welche Arten von Objekten dabei entstanden sind und warum ihre Umgebung so heiß leuchtet. NuSTAR bietet uns auch einen beispiellosen Blick auf die heiße Korona unserer Sonne, heiße Gase in Galaxienhaufen und das sehr massereiche Schwarze Loch im Zentrum unserer Galaxis.

Das Bild oben ist eine künstlerische Illustration. Es zeigt, wie NuSTAR arbeitet. Das Teleskop untersucht Röntgenstrahlen, die zum Beispiel auch beim Zahnarzt eingesetzt werden. Die Röntgenstrahlen treten rechts in das Teleskop ein. Sie streifen zwei Reihen paralleler Spiegel entlang. Die Spiegel fokussieren die Strahlen auf die Detektoren links. Die beiden Einheiten sind mit einem langen, leichten Mast verbunden. Das ganze Instrument wird von den Solarpaneelen links oben mit Energie versorgt.

Der Reiz von NuSTAR besteht nicht nur in den erwarteten Ergebnissen, sondern auch in einem neuen Blick ins Universum auf bisher völlig unbekannte Dinge, die vielleicht entdeckt werden. NuSTAR bleibt voraussichtlich zwei Jahre in Betrieb.

Foliensatz (ASOW) NuSTAR von PI Fiona Harrison: Download
Zur Originalseite

NASA bekommt zwei neue Teleskope in Hubble-Qualität

Über der Erde mit Wolken und Ozeanen schwebt das Weltraumteleskop Hubble. Links oben geht die Atmosphäre mit einem blauen Rand in die Schwärze des Weltraums über.

Bildcredit: NASA

Was wäre, wenn ihr kostenlos ein neues Hubble-Teleskop bekommt? Oder gar zwei? Die astronomische Gemeinschaft ist in heller Aufregung, denn die US National Reconnaissance Office übertrug unerwartet die Rechte an zwei weltraumtauglichen Teleskopen in Hubble-Qualität an die NASA.

Nun wird der Nutzen dieser Teleskope für bereits gesetzte wissenschaftliche Ziele geprüft. Es gibt schon Hinweise, dass sogar nur eines dieser Teleskope bei der Suche nach Exoplaneten extrem nützlich wäre. Anhand ferner Galaxien und Supernovae könnte man die Natur der Dunklen Energie besser erforschen.

Nun starten die Teleskope zwar kostenlos, doch es ist teuer, ein Teleskop in Betrieb zu nehmen und mit brauchbaren Kameras auszurüsten. Daher entscheidet die NASA sehr sorgfältig, wie sie die beiden neuen Teleskope in ihr bestehendes Budget einbinden kann.

Oben seht ihr das Original-Weltraumteleskop Hubble, wie es bei der Servicemission 2002 hoch über der Erde schwebte.

Zur Originalseite

Herschels Cygnus X

Das Bild ist voller leuchtender Staubfasern in Gelb, Weiß und Blau.

Credit: ESA/PACS/SPIRE/ Martin Hennemann und Frédérique Motte, Laboratoire AIM Paris-Saclay, CEA/Irfu – CNRS/INSU – Univ. Paris Diderot, Frankreich

Diese Infrarotansicht von Cygnus X stammt vom Weltraumteleskop Herschel. Das Bild zeigt 6×2 Grad einer der nächstliegenden und massereichsten Sternbildungsregionen in der Ebene der Milchstraße.

Eigentlich enthält die reichhaltige Sternfabrik schon einen massereichen Sternhaufen. Er wird als Cygnus-OB2-Assoziation bezeichnet. Doch diese Sterne fallen hauptsächlich durch die Region unten in der Mitte auf. Dieser Bereich wurde von ihren energiereichen Winden und ihrer Strahlung freigeräumt, denn er wird von Herschels Instrumenten im langwelligen Bereich des Spektrums nicht gezeigt.

Herschel zeigt jedoch die komplexen Strukturen aus kühlem Gas und Staub in dieser Region. Sie bilden dichte Ansammlungen, in denen neue massereiche Sterne entstehen. Cygnus X ist etwa 4500 Lichtjahre entfernt und liegt mitten im nördlichen Sternbild Schwan. In dieser Entfernung wäre das Bild fast 500 Lichtjahre breit.

Zur Originalseite

Fermi-Epizyklen: Der Pfad des Vela-Pulsars

Ein Kreus auf dunklem Hintergrund ist von vielen hellen Linien überzogen, die einander überlagern. Dabei entsteht eine rosettenartige Form.

Bildcredit: NASA, DOE, Internationale Fermi LAT-Zusammenarbeit

Das Gammastrahlen-Weltraumteleskop Fermi erforscht den Kosmos in extremen Energiebereichen. Es umrundet alle 95 Minuten den Planeten Erde. Dabei schwankt es absichtlich auf wechselnden Umlaufbahnen nach Norden und Süden, um mit seinem Large Area Telescope (LAT) den Himmel zu vermessen. Die Raumsonde rotiert auch. Das sorgt dafür, dass die Solarpaneele, welche die Energie liefern, auf die Sonne gerichtet bleiben. Die Achse ihrer Bahn präzediert wie ein Kreisel. Die Rotationsachse vollendet alle 54 Tage einen Umlauf.

Diese vielen Bewegungszyklen führen dazu, dass die Pfade von Gammastrahlenquellen aus Sicht der Raumsonde komplexe Muster zeichnen. Diese Darstellung veranschaulicht das, sie zeigt den hypothetischen Pfad des Vela-Pulsars. Die Darstellung ist auf das Bildfeld des LAT-Instruments zentriert, sie zeigt ein 180 Grad breites Bildfeld und folgte der Position des Vela-Pulsars von August 2008 bis August 2010. Die helle Konzentration an Linien um die Mitte zeigt, dass sich der Vela-Pulsar meistens in der sensitiven Region des LAT-Detektors befand.

Der Vela-Pulsar entstand bei der finalen Explosion eines massereichen Sterns in der Milchstraße. Er ist ein Neutronenstern, der 11 Mal pro Sekunde rotiert. Im Spektrum der Gammastrahlen ist er die hellste und beständige Quelle am Himmel.

Zur Originalseite

RCW 86: Historischer Supernova-Überrest

Im Hintergrund leuchten rote Nebel, links oben ist ein schmaler, rechts unten ein kürzerer breiterer bogenförmiger grün leuchtender Nebel.

Bildcredit: Röntgen: XMM-Newton, Chandra / Infrarot: WISE, Spitzer

Im Jahr 185 n. Chr. verzeichneten chinesische Astronomen die Erscheinung eines Sterns in der Nanman-Sterngruppe. Dieser Teil des Himmels liegt auf modernen Sternkarten bei Alpha und Beta Centauri. Der neue Stern war monatelang sichtbar. Es ist vermutlich die erste Supernova der Geschichtsschreibung.

Dieses Kompositbild wurde in mehreren Wellenlängen erstellt. Es entstand mit Weltraumteleskopen des 21. Jahrhunderts. Die Röntgenteleskope XMM-Newton und Chandra sowie die Infrarotteleskope Spitzer und WISE zeigen den Supernovaüberrest RCW 86. Er wird als Überrest dieser Sternexplosion verstanden.

Das interstellare Gas auf der Falschfarbenansicht wird von der Stoßfront der expandierenden Supernova in Röntgenenergien (blau und grün) aufgeheizt. Interstellarer Staub mit kühleren Temperaturen leuchtet in infrarotem Licht (gelb und rot).

Der Überrest enthält große Mengen an Element Eisen, außerdem fehlt ein Neutronenstern oder Pulsar. Das lässt vermuten, dass die Supernova vom Typ Ia war. Typ Ia-Supernovae sind thermonukleare Explosionen, die weiße Zwergsterne zerstören, wenn diese in einem Doppelsternsystem Materie von einem Begleiter ansammeln.

Die Hülle strahlt Röntgenlicht ab. Die Stoßgeschwindigkeiten, die in der Hülle gemessen wurden, und die Infrarot-Temperaturen des Staubs lassen vermuten, dass sich der Überrest extrem schnell in einer Blase mit sehr geringer Dichte ausdehnt. Die Blase wurde vor der Explosion vom System des weißen Zwergs erzeugt.

RCW 86 liegt in der Nähe der Ebene unserer Milchstraße. Er ist etwa 8200 Lichtjahre entfernt und hat einen Radius von ungefähr 50 Lichtjahren.

Zur Originalseite