Planck-Karten des Mikrowellenhintergrundes

Das ovale Bild ist eine Karte der kosmischen Hintergrundstraße. Rote und blaue Flecken zeigen Stellen, die heißer oder kälter sind als der Durchschnitt.

Bildcredit: Europäische Weltraumagentur ESA, Planck-Arbeitsgemeinschaft

Woraus besteht unser Universum? Um das herauszufinden, startete die ESA den Satelliten Planck. Er kartierte von 2009 bis 2013 leichte Temperaturunterschiede auf der ältesten bekannten optischen Oberfläche so detailreich wie nie zuvor. Diese Oberfläche ist der Himmelshintergrund, der vor Milliarden Jahren übrig blieb, als unser Universum erstmals für Licht durchsichtig wurde.

Der kosmische Mikrowellenhintergrund ist in allen Richtungen sichtbar. Es ist ein komplexer Bildteppich. Wir beobachten heiße und kalte Muster an Stellen, wo das Universum aus bestimmten Arten von Energie besteht, die sich auf eine gewisse Weise entwickelt haben. Letzte Woche wurden die endgültigen Ergebnisse veröffentlicht. Sie bestätigen, dass ein Großteil unseres Universums aus rätselhafter, unbekannter Dunkler Energie besteht. Außerdem ist ein Großteil der verbleibenden Materieenergie seltsam dunkel.

Die „finalen“ Planckdaten von 2018 bestätigen auch, dass das Universum etwa 13,8 Milliarden Jahre alt ist. Sie zeigen auch, dass die lokale Ausdehnungsrate, die sogenannte Hubblekonstante, 67,4 (+/- 0,5) km/sec/Mpc beträgt. Seltsamerweise ist die Hubblekonstante, die durch Beobachtung des frühen Universums ermittelt wurde, etwas niedriger als die Hubblekonstante, die mit anderen Methoden im späten Universum gemessen wurde. Dieser Unterschied sorgt für Diskussionen und Vermutungen.

Zur Originalseite

Endlich GLAST

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit:  NASA, DOE, Arbeitsgemeinschaft Gammastrahlen-Weltraumteleskop Fermi

Beschreibung: Diese Delta-II-Rakete, die vor langer Zeit von einem sehr nahen Planeten durch eine wogende Rauchwolke aufstieg, verließ am 11. Juni 2008 um 12:05 Uhr EDT die Startrampe 17-B der Luftwaffenstation Cape Canaveral. Gemütlich in der Ladebucht lag GLAST, das Gammastrahlen-Großflächen-Weltraumteleskop.

GLASTs Detektortechnologie wurde für den Einsatz in terrestrischen Teilchenbeschleunigern entwickelt. Daher kann GLAST im Orbit Gammastrahlen von extremen Umgebungen über der Erde und im fernen Universum aufspüren, darunter in sehr massereichen Schwarzen Löchern in den Zentren ferner aktiver Galaxien und die Quellen mächtiger Gammastrahlenausbrüche. Diese eindrucksvollen kosmischen Beschleuniger erreichen Energien, die in erdgebundenen Laboren nicht möglich sind.

Seine Bezeichnung lautet nun Gammastrahlen-Weltraumteleskop Fermi. Am 10. Jahrestag seines Starts mögen die Fermi-Wissenschaftsendspiele beginnen.

Zur Originalseite

Fermi wissenschaftliche Stichwahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Das Gammastrahlenteleskop Fermi der NASA wurde am 11. Juni 2008 in die Umlaufbahn gebracht. Seine Instrumente erkennen Gammastrahlen – diese sind Licht, das Tausende bis Hunderte Milliarden Mal energiereicher ist als das, was wir mit unseren Augen sehen.

Während der letzten zehn Jahre führte Fermis energiereiche Forschungsreise zu einer Fülle erstaunlicher Entdeckungen, von extremen Umgebungen über unserem schönen Planeten bis hin ins ferne Universum. Nun können Sie Fermis bisher bestes Ergebnis wählen.

Zu Fermis 10. Jahrestag wurden Bilder, welche 16 wissenschaftliche Ergebnisse darstellen, ausgewählt und zu Gruppen angeordnet. Folgen Sie diesem Link und wählen Sie in der ersten Runde aus jedem Paar Ihre Favoriten. Alle zwei Wochen findet die Wahl der nächsten Runde statt – kommen Sie wieder! Der Sieger des Fermi-Finales wird am 6. August veröffentlicht – zum zehnjährigen Jubiläum der ersten wissenschaftlichen Daten von Fermi.

Zur Originalseite

JWST: Geister und Spiegel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Chris Gunn, NASA

Beschreibung: Es sind keine Geister, die über dem James-Webb-Weltraumteleskop schweben. Es steht da mit goldgetönten Spiegelsegmenten und gefaltetem Tragwerk im Reinraum der Raumfahrtsysteme-Entwicklungs- und Montageanlage des Goddard-Raumfahrtzentrums, doch die Lichter sind ausgeschaltet. Nachfolgende Vibrations- und Akustiktests, helle Blitze und Ultraviolettlichter werden über das stehende Teleskop gespielt, um nach Kontamination zu suchen, die im abgedunkelten Raum leichter erkennbar ist.

Durch die lange Belichtungszeit der Kamera werden im Dunklen die wandernden Lichter und Ingenieure zu geisterhaften Erscheinungen verwischt. Das James-Webb-Weltraumteleskop ist Hubbles wissenschaftlicher Nachfolger. Es ist für Infrarotforschung im frühen Universum optimiert. Sein Start ist für 2018 auf Französisch-Guayana mit einer Ariane 5 der Europäischen Weltraumagentur geplant.

Zur Originalseite

M101 im 21. Jahrhundert

Die Feuerradgalaxie M101 füllt das Bild. Ihre Spiralarme sind auf dieser Aufnahme von hellrot leuchtenden Sternbildungsgebieten gesäumt, nach außen hin verlaufen sie blau, was offene Sternhaufen andeutet.

Bildcredit: NASA, ESA, CXC, JPL, Caltech STScI

Die große, schöne Spiralgalaxie M101 ist einer der letzten Einträge in Charles Messiers berühmtem Katalog. Doch sie ist nicht unbedeutend. Die Galaxie ist ungefähr gewaltige 170.000 Lichtjahre groß. Sie misst also fast doppelt so viel wie unsere Milchstraße. M101 war einer der Spiralnebel, die mit Lord Rosses großem Teleskop beobachtet wurden. Es war der Leviathan von Parsonstown aus dem 19. Jahrhundert.

Diese Ansicht des großen Inseluniversums entstand in mehreren Wellenlängen. Sie ist im Vergleich dazu ein Komposit aus Bildern, die im 21. Jahrhundert von Weltraumteleskopen aufgenommen wurden. Die Bilddaten sind farbcodiert, von Röntgenstrahlen bis Infrarotwellenlängen (hohe bis niedrige Energie). Sie stammen vom Röntgenobservatorium Chandra (violett), dem Galaxy Evolution Explorer (GALEX, blau) sowie den Weltraumteleskopen Hubble (gelb) und Spitzer (rot).

Die Röntgendaten zeigen Gas um explodierte Sterne, Neutronensterne und Doppelsternsysteme mit Schwarzen Löchern in M101. Dieses Gas ist viele Millionen Grad heiß. Die Daten mit niedriger Energie zeigen Sterne und Staub, aus denen die prächtigen Spiralarme von M101 bestehen.

M101 ist auch als Feuerradgalaxie bekannt. Sie liegt etwa 25 Millionen Lichtjahre entfernt im nördlichen Sternbild Große Bärin (Ursa Major).

(Hinweis der Herausgeber: Das ursprüngliche hier gezeigte Bild wurde am 25. Jänner zurückgezogen.)

Zur Originalseite

Aktive Sonne während der totalen Sonnenfinsternis

Mitten im Bild ist eine gelbe Kugel mit weißen und dunklen Strukturen, sie ist von weißen Schlieren umgeben, die in einen dunklen Kreis verlaufen. Außerhalb des dunklen Kreises sind lange Streifen und Strahlen der Sonnenkorona.

Bildcredit und Bildrechte: D. Seaton (ROB) und J. M. Pasachoff (Williams-College Sonnenfinsternis-Expedition), NRL, ESA, NASA, NatGeo

Manchmal bietet eine totale Sonnenfinsternis eine Gelegenheit für ein besonderes Bild. Die Sonnenfinsternis zu Beginn des Monats wurde von mehreren Observatorien aufgenommen. Das innerste Bild zeigt die Sonne in Ultraviolettlicht. Es wurde mit dem Instrument SWAP aufgenommen. SWAP befindet an Bord der Mission Proba-2 in einem niedrigen sonnensynchronen Erdorbit.

Das Bild ist von einem Finsternisbild umgeben, das auf der Erde fotografiert und in Blau wiedergegebenen wurde. Es wurde in Gabun fotografiert. Weiter außen ist eine kreisrund abgedeckte Region, mit der die Sonnenmitte künstlich abgedunkelt wird. Sie wurde vom Instrument LASCO an Bord der Raumsonde SOHO in einem Sonnenorbit aufgenommen. Das äußerste Bild zeigt die ausfließende Sonnenkorona. Die Aufnahme entstand zehn Minuten nach der Finsternis mit LASCO.

In den letzten Wochen zeigte unsere Sonne ungewöhnlich viele Sonnenflecken, koronale Massenauswürfe und Sonneneruptionen. Diese Aktivität war zu erwarten, da die Sonnenaktivität gerade ein Maximum erreicht. Das ist der aktivste Teil ihres 11-jährigen Sonnenzyklus. Das Ergebnisbild ist eine interessante Montage mehrerer Sonnenschichten. Man kann damit aktive Regionen in oder nahe der Sonnenoberfläche besser mit den ausströmenden Strahlen in der Sonnenkorona vergleichen.

Zur Originalseite

Infrarotporträt der Großen Magellanschen Wolke

Das Infrarotbild zeigt die Große Magellansche Wolke in Falschfarben. Das Bild betont Staubwolken, die in sichtbarem Licht undurchdringlich sind.

Bildcredit: ESA / NASA / JPL-Caltech / STScI

Kosmische Staubwolken kräuseln dieses Infrarotporträt der Begleitgalaxie unserer Milchstraße, der Großen Magellanschen Wolke. Das Kompositbild des Weltraumteleskops Herschel und des Weltraumteleskops Spitzer zeigt, dass die benachbarte Zwerggalaxie voller Staubwolken ist, ähnlich wie der Staub in der Ebene der Milchstraße.

Die Staubtemperaturen zeigen Anzeichen von Sternbildungsaktivität. Die Daten von Spitzer in blauen Farbtönen zeigen warmen Staub, der von jungen Sternen aufgeheizt wird. Herschels Instrumente steuerten die in Rot und Grün gezeigten Bilddaten bei. Sie bilden Staubemissionen von kühleren, dazwischenliegenden Regionen ab. Dort beginnt die Sternbildung gerade, oder sie hat bereits aufgehört.

Die Erscheinung der Großen Magellanschen Wolke in Infrarot wird von Staubemissionen bestimmt. Sie unterscheidet sich von Bildern in sichtbarem Licht. Doch der bekannte Tarantelnebel in der Galaxie sticht immer noch hervor. Er ist die hellste Region links neben der Bildmitte und leicht erkennbar.

Die große Wolke Magellans ist etwa 160.000 Lichtjahre entfernt. Sie hat einen Durchmesser von ungefähr 30.000 Lichtjahren.

Zur Originalseite

Herschels Andromeda

Die Galaxie im Bild wirkt fremdartig, weil nicht ihre Sterne gezeigt werden, sondern der Staub, der normalerweise dunkel ist. Um einen Kern verlaufen gewundene, orangefarben und gelb leuchtende Ranken.

Bildcredit: ESA/Herschel/PACS und SPIRE-Arbeitsgemeinschaft, O. Krause, HSC, H. Linz

Diese Infrarotansicht des Weltraumteleskops Herschel erforscht die Andromedagalaxie, die unserer Milchstraße nächstgelegene große Spiralgalaxie. Das berühmte Inseluniversum ist nur 2,5 Millionen Lichtjahre entfernt. In der Astronomie ist es auch als M31 bekannt.

Andromeda ist mehr als 200.000 Lichtjahre breit. Sie ist also mehr als doppelt so groß wie die Milchstraße. Die Bilddaten wurden in Falschfarben dargestellt. Sie markieren die kühlen Staubbahnen und Staubwolken, die im Infrarotlicht leuchten. Diese sind in sichtbaren Wellenlängen dunkel und undurchsichtig.

Rote Farbtöne im Außenbereich der Galaxie zeigen das Leuchten von Staub, der von Sternenlicht wenige zig Grad über den absoluten Nullpunkt erwärmt wurde. Blaue Farben gehen mit wärmerem Staub einher, der von Sternen im dicht gefüllten zentralen Kern aufgewärmt wird. Der Staub ist auch eine Markierungssubstanz für molekulares Gas. Er zeigt den gewaltigen Vorrat an Rohmaterial für künftige Sternbildung in Andromeda.

Zur Originalseite