Planck-Karten des Mikrowellenhintergrundes

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Europäische Weltraumorganisation, Planck Collaboration

Beschreibung: Woraus besteht unser Universum? Um das herauszufinden, startete die ESA den Satelliten Planck, der von 2009 bis 2013 so detailreich wie nie zuvor leichte Temperaturunterschiede auf der ältesten optischen Oberfläche kartierte, die wir kennen – dem Himmelshintergrund, der vor Milliarden Jahren übrig blieb, als unser Universum erstmals für Licht transparent wurde.

Dieser kosmische Mikrowellenhintergrund ist in allen Richtungen sichtbar. Es ist ein komplexer Bildteppich, der die beobachteten heißen und kalten Muster nur dort aufweist, wo das Universum aus bestimmten Arten von Energie besteht, die sich auf bestimmte Weise entwickelt haben. Letzte Woche wurden die endgültigen Ergebnisse veröffentlicht. Diese bestätigen erneut, dass ein Großteil unseres Universums aus rätselhafter, unbekannter Dunkler Energie besteht, und dass auch ein Großteil der verbleibenden Materienenergie seltsam dunkel ist.

Zusätzlich bestätigen die „finalen“ 2018er-Planckdaten eindrucksvoll, dass das Alter des Universums etwa 13,8 Milliarden Jahre beträgt, und dass die lokale Expansionsrate, die als Hubblekonstante bezeichnet wird, 67,4 (+/- 0,5) km/sec/Mpc beträgt. Seltsamerweise ist diese durch Beobachtung des frühen Universums ermittelte Hubblekonstante etwas niedriger ist als jene, die durch andere Methoden im späten Universum ermittelt wurde. Die dadurch entstehende Diskrepanz sorgt für viele Diskussionen und Mutmaßungen.

Zur Originalseite

Endlich GLAST

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit:  NASA, DOE, Arbeitsgemeinschaft Gammastrahlen-Weltraumteleskop Fermi

Beschreibung: Diese Delta-II-Rakete, die vor langer Zeit von einem sehr nahen Planeten durch eine wogende Rauchwolke aufstieg, verließ am 11. Juni 2008 um 12:05 Uhr EDT die Startrampe 17-B der Luftwaffenstation Cape Canaveral. Gemütlich in der Ladebucht lag GLAST, das Gammastrahlen-Großflächen-Weltraumteleskop.

GLASTs Detektortechnologie wurde für den Einsatz in terrestrischen Teilchenbeschleunigern entwickelt. Daher kann GLAST im Orbit Gammastrahlen von extremen Umgebungen über der Erde und im fernen Universum aufspüren, darunter in sehr massereichen Schwarzen Löchern in den Zentren ferner aktiver Galaxien und die Quellen mächtiger Gammastrahlenausbrüche. Diese eindrucksvollen kosmischen Beschleuniger erreichen Energien, die in erdgebundenen Laboren nicht möglich sind.

Seine Bezeichnung lautet nun Gammastrahlen-Weltraumteleskop Fermi. Am 10. Jahrestag seines Starts mögen die Fermi-Wissenschaftsendspiele beginnen.

Zur Originalseite

Fermi wissenschaftliche Stichwahl

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Das Gammastrahlenteleskop Fermi der NASA wurde am 11. Juni 2008 in die Umlaufbahn gebracht. Seine Instrumente erkennen Gammastrahlen – diese sind Licht, das Tausende bis Hunderte Milliarden Mal energiereicher ist als das, was wir mit unseren Augen sehen.

Während der letzten zehn Jahre führte Fermis energiereiche Forschungsreise zu einer Fülle erstaunlicher Entdeckungen, von extremen Umgebungen über unserem schönen Planeten bis hin ins ferne Universum. Nun können Sie Fermis bisher bestes Ergebnis wählen.

Zu Fermis 10. Jahrestag wurden Bilder, welche 16 wissenschaftliche Ergebnisse darstellen, ausgewählt und zu Gruppen angeordnet. Folgen Sie diesem Link und wählen Sie in der ersten Runde aus jedem Paar Ihre Favoriten. Alle zwei Wochen findet die Wahl der nächsten Runde statt – kommen Sie wieder! Der Sieger des Fermi-Finales wird am 6. August veröffentlicht – zum zehnjährigen Jubiläum der ersten wissenschaftlichen Daten von Fermi.

Zur Originalseite

JWST: Geister und Spiegel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Chris Gunn, NASA

Beschreibung: Es sind keine Geister, die über dem James-Webb-Weltraumteleskop schweben. Es steht da mit goldgetönten Spiegelsegmenten und gefaltetem Tragwerk im Reinraum der Raumfahrtsysteme-Entwicklungs- und Montageanlage des Goddard-Raumfahrtzentrums, doch die Lichter sind ausgeschaltet. Nachfolgende Vibrations- und Akustiktests, helle Blitze und Ultraviolettlichter werden über das stehende Teleskop gespielt, um nach Kontamination zu suchen, die im abgedunkelten Raum leichter erkennbar ist.

Durch die lange Belichtungszeit der Kamera werden im Dunklen die wandernden Lichter und Ingenieure zu geisterhaften Erscheinungen verwischt. Das James-Webb-Weltraumteleskop ist Hubbles wissenschaftlicher Nachfolger. Es ist für Infrarotforschung im frühen Universum optimiert. Sein Start ist für 2018 auf Französisch-Guayana mit einer Ariane 5 der Europäischen Weltraumagentur geplant.

Zur Originalseite

Infrarotporträt der Großen Magellanschen Wolke

Das Infrarotbild zeigt die Große Magellansche Wolke in Falschfarben. Das Bild betont Staubwolken, die in sichtbarem Licht undurchdringlich sind.

Bildcredit: ESA / NASA / JPL-Caltech / STScI

Kosmische Staubwolken kräuseln dieses Infrarotporträt der Begleitgalaxie unserer Milchstraße, der Großen Magellanschen Wolke. Das Kompositbild des Weltraumteleskops Herschel und des Weltraumteleskops Spitzer zeigt, dass die benachbarte Zwerggalaxie voller Staubwolken ist, ähnlich wie der Staub in der Ebene der Milchstraße.

Die Staubtemperaturen zeigen Anzeichen von Sternbildungsaktivität. Die Daten von Spitzer in blauen Farbtönen zeigen warmen Staub, der von jungen Sternen aufgeheizt wird. Herschels Instrumente steuerten die in Rot und Grün gezeigten Bilddaten bei. Sie bilden Staubemissionen von kühleren, dazwischenliegenden Regionen ab. Dort beginnt die Sternbildung gerade, oder sie hat bereits aufgehört.

Die Erscheinung der Großen Magellanschen Wolke in Infrarot wird von Staubemissionen bestimmt. Sie unterscheidet sich von Bildern in sichtbarem Licht. Doch der bekannte Tarantelnebel in der Galaxie sticht immer noch hervor. Er ist die hellste Region links neben der Bildmitte und leicht erkennbar.

Die große Wolke Magellans ist etwa 160.000 Lichtjahre entfernt. Sie hat einen Durchmesser von ungefähr 30.000 Lichtjahren.

Zur Originalseite

Herschels Andromeda

Die Galaxie im Bild wirkt fremdartig, weil nicht ihre Sterne gezeigt werden, sondern der Staub, der normalerweise dunkel ist. Um einen Kern verlaufen gewundene, orangefarben und gelb leuchtende Ranken.

Bildcredit: ESA/Herschel/PACS und SPIRE-Arbeitsgemeinschaft, O. Krause, HSC, H. Linz

Diese Infrarotansicht des Weltraumteleskops Herschel erforscht die Andromedagalaxie, die unserer Milchstraße nächstgelegene große Spiralgalaxie. Das berühmte Inseluniversum ist nur 2,5 Millionen Lichtjahre entfernt. In der Astronomie ist es auch als M31 bekannt.

Andromeda ist mehr als 200.000 Lichtjahre breit. Sie ist also mehr als doppelt so groß wie die Milchstraße. Die Bilddaten wurden in Falschfarben dargestellt. Sie markieren die kühlen Staubbahnen und Staubwolken, die im Infrarotlicht leuchten. Diese sind in sichtbaren Wellenlängen dunkel und undurchsichtig.

Rote Farbtöne im Außenbereich der Galaxie zeigen das Leuchten von Staub, der von Sternenlicht wenige zig Grad über den absoluten Nullpunkt erwärmt wurde. Blaue Farben gehen mit wärmerem Staub einher, der von Sternen im dicht gefüllten zentralen Kern aufgewärmt wird. Der Staub ist auch eine Markierungssubstanz für molekulares Gas. Er zeigt den gewaltigen Vorrat an Rohmaterial für künftige Sternbildung in Andromeda.

Zur Originalseite

NuSTAR-Röntgenteleskop gestartet

Die Grafik zeigt den Aufbau und die Funktion von NuSTAR. Links ist die Fokusebene mit den Detektoren sowie das Solarpaneel. Rechts ist die Optik des Röntgenteleskops. Die beiden Teile sind mit einem leichten Mast miteinander verbunden.

Illustrationscredit und Bildrechte: Fiona Harrison et al., Caltech, NASA

Was bleibt übrig, wenn ein Stern explodiert? Um das herauszufinden, startete die NASA letzte Woche NuSTAR – das Nuclear Spectroscopic Telescope Array – in den Erdorbit. NuSTAR fokussiert harte Röntgenstrahlen, die von Atomkernen abgestrahlt werden.

Mit NuSTAR werden unter anderem die Umgebungen von Supernovaüberresten untersucht. Man erforscht, warum diese Supernovae explodierten, welche Arten von Objekten dabei entstanden sind und warum ihre Umgebung so heiß leuchtet. NuSTAR bietet uns auch einen beispiellosen Blick auf die heiße Korona unserer Sonne, heiße Gase in Galaxienhaufen und das sehr massereiche Schwarze Loch im Zentrum unserer Galaxis.

Das Bild oben ist eine künstlerische Illustration. Es zeigt, wie NuSTAR arbeitet. Das Teleskop untersucht Röntgenstrahlen, die zum Beispiel auch beim Zahnarzt eingesetzt werden. Die Röntgenstrahlen treten rechts in das Teleskop ein. Sie streifen zwei Reihen paralleler Spiegel entlang. Die Spiegel fokussieren die Strahlen auf die Detektoren links. Die beiden Einheiten sind mit einem langen, leichten Mast verbunden. Das ganze Instrument wird von den Solarpaneelen links oben mit Energie versorgt.

Der Reiz von NuSTAR besteht nicht nur in den erwarteten Ergebnissen, sondern auch in einem neuen Blick ins Universum auf bisher völlig unbekannte Dinge, die vielleicht entdeckt werden. NuSTAR bleibt voraussichtlich zwei Jahre in Betrieb.

Foliensatz (ASOW) NuSTAR von PI Fiona Harrison: Download
Zur Originalseite

NASA bekommt zwei neue Teleskope in Hubble-Qualität

Über der Erde mit Wolken und Ozeanen schwebt das Weltraumteleskop Hubble. Links oben geht die Atmosphäre mit einem blauen Rand in die Schwärze des Weltraums über.

Bildcredit: NASA

Was wäre, wenn ihr kostenlos ein neues Hubble-Teleskop bekommt? Oder gar zwei? Die astronomische Gemeinschaft ist in heller Aufregung, denn die US National Reconnaissance Office übertrug unerwartet die Rechte an zwei weltraumtauglichen Teleskopen in Hubble-Qualität an die NASA.

Nun wird der Nutzen dieser Teleskope für bereits gesetzte wissenschaftliche Ziele geprüft. Es gibt schon Hinweise, dass sogar nur eines dieser Teleskope bei der Suche nach Exoplaneten extrem nützlich wäre. Anhand ferner Galaxien und Supernovae könnte man die Natur der Dunklen Energie besser erforschen.

Nun starten die Teleskope zwar kostenlos, doch es ist teuer, ein Teleskop in Betrieb zu nehmen und mit brauchbaren Kameras auszurüsten. Daher entscheidet die NASA sehr sorgfältig, wie sie die beiden neuen Teleskope in ihr bestehendes Budget einbinden kann.

Oben seht ihr das Original-Weltraumteleskop Hubble, wie es bei der Servicemission 2002 hoch über der Erde schwebte.

Zur Originalseite