Im Inneren des Flammennebels

Der Flammennebel NGC 2024 ist 1400 Lichtjahre entfernt im Sternbild Orion in der Nähe des Sterns Alnitak.

Bildcredit: NASA, JPL-Caltech, IPAC Infrared Science ArchiveBearbeitung: Amal Biju

Beschreibung: Der Flammennebel ist 1400 Lichtjahre entfernt und ein Prachtstück auf optischen Bildern der staubigen, dicht gedrängten Sternbildungsregionen im Oriongürtel und beim östlichsten Gürtelstern Alnitak. Dieser ist der helle Stern rechts auf diesem Infrarotbild des Weltraumteleskops Spitzer.

Die Infrarotansicht ist ungefähr 15 Lichtjahre breit und führt euch ins Innere des Nebels mit leuchtendem Gas und undurchsichtigen Staubwolken. Sie zeigt viele Sterne des in jüngster Zeit entstandenen, eingebetteten Sternhaufens NGC 2024, der etwa in der Mitte konzentriert ist. Die Sterne in NGC 2024 sind zwischen 200.000 und 1,5 Millionen Jahre jung.

Die Daten lassen den Schluss zu, dass die jüngsten Sterne um die Mitte des Flammennebelhaufens konzentriert sind. Das ist das Gegenteil der einfachsten Modelle für Sternentstehung in einem Sternentstehungsgebiet, die besagen, dass die Sternbildung im dichten Zentrum eines Molekülwolkenkerns beginnt. Das Ergebnis erfordert ein komplexeres Modell für Sternbildung im Inneren des Flammennebels.

Zur Originalseite

Der Röntgenhimmel von eROSITA

Erste Ganzhimmelsdurchmusterung im Röntgenlicht des Weltraumteleskops eROSITA an Bord des Satelliten Spektr-RG.

Bildcredit und Bildrechte: J. Sanders, H. Brunner und eSASS Team (MPE); E. Churazov, M. Gilfanov (IKI)

Beschreibung: Was wäre, wenn Sie Röntgenstrahlen sehen könnten? Der Nachthimmel wäre ein seltsamer, fremdartiger Ort. Röntgenstrahlen haben ungefähr 1000-mal mehr Energie als die Photonen von sichtbarem Licht. Sie entstehen durch gewaltige Explosionen sowie in astronomischen Umgebungen mit hoher Temperatur. Statt der vertrauten ruhigen Sterne wäre der Himmel voller exotischer Sterne, aktiver Galaxien und heißer Supernovaüberreste.

Dieses Röntgenbild zeigt den ganzen Himmel beispiellos detailreich in Röntgenlicht, abgebildet vom Weltraumteleskop eROSITA an Bord des Satelliten Spektr-RG, der letztes Jahr in einen L2-Orbit gestartet wurde.

Die Ebene unserer Milchstraße verläuft quer über die Mitte. Das Bild zeigt einen diffusen, überall vorhandenen Röntgenhintergrund und die heiße interstellare Blase, die als Nordpolar-Sporn bezeichnet wird. Auch glühend heiße Supernovaüberreste wie Vela, die Cygnus-Schleife und Cas A oder energiereiche Doppelsterne wie Cyg X-1 und Cyg X-2 sind abgebildet, weiters die GMW und die Galaxienhaufen in Coma, Virgo und Fornax.

Dieses erste Ganzhimmelsbild von eROSITA zeigt mehr als eine Million Röntgenquellen, von denen manche noch nicht erklärbar sind und daher sicherlich weiter erforscht werden.

Zur Originalseite

Das Monster des Mystischen Berges wird vernichtet

Der Kopf dieses Monsters im Catina-Nebel ist ein Herbig-Haro-Objekt, darin steckt ein neu entstandener Stern, der es langsam zerstört.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Beschreibung: Im Kopf dieses interstellaren Monsters steckt ein Stern, der es langsam zerstört. Das riesige Monster ist eigentlich eine leblose Reihe an Säulen aus Gas und Staub, die Lichtjahre lang sind. Der Stern im Kopf selbst ist hinter dem undurchsichtigen interstellaren Staub verborgen, doch er bricht teilweise heraus, indem er einander gegenüberliegende Strahlen aus energiereichen Teilchen ausstößt – so genannte Herbig-Haro-Strahlen.

Diese Säulen befinden sich im etwa 7500 Lichtjahre entfernten Carinanebel. Inoffiziell sind sie als Mystischer Berg bekannt. Dunkler Staub bestimmt die Erscheinung dieser Säulen, obwohl sie großteils aus durchsichtigem Wasserstoff bestehen.

Dieses Bild wurde mit dem Weltraumteleskop Hubble fotografiert. Das energiereiche Licht und die Winde von massereichen, neu entstandenen Sternen verdampfen und zerstreuen überall an diesen Säulen die staubigen Sternentstehungsorte, in denen sie selbst entstanden sind. In wenigen Millionen Jahren wird der Kopf dieses Riesen sowie ein Großteil seines Körpers von den Sternen im Inneren und in der Umgebung vollständig verdampft worden sein.

APOD in den Weltsprachen arabisch, chinesisch (Peking), chinesisch (Taiwan), deutsch, Farsi, französisch, französisch, hebräisch, indonesisch, japanisch, katalanisch, koreanisch, kroatisch, montenegrinisch, niederländisch, polnisch, russisch, serbisch, slowenisch, spanisch, tschechisch und ukrainisch.

Zur Originalseite

Das Planetensystem Kepler-90

Im Planetensystem Kepler-90 kreisen 8 Planeten um einen sonnenähnlichen Stern; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA Ames, Wendy Stenzel

Beschreibung: Haben andere Sterne Planetensysteme wie unseres? Ja – ein solches System ist Kepler-90. Der Satellit Kepler, der zwischen 2009 und 2018 im Erdorbit betrieben wurde, entdeckte und katalogisierte acht Planeten, somit besitzt Kepler-90 die gleiche Anzahl bekannter Planeten wie unser Sonnensystem.

Wie unser System besitzt Kepler-90 einen Stern der Spektralklasse G vergleichbar mit unserer Sonne, weiters Gesteinsplaneten wie unsere Erde sowie ähnlich große Planeten wie Jupiter und Saturn. Zu den Unterschieden gehört, dass alle bekannten Kepler-90-Planeten relativ nahe beieinander um den Stern kreisen – näher als die Erde um die Sonne -, weshalb sie womöglich zu heiß sind, um Leben zu entwickeln. Doch bei Beobachtungen über einen längeren Zeitraum könnten weiter außen liegende, kühlere Planeten entdeckt werden.

Kepler-90 ist ungefähr 2500 Lichtjahre entfernt. Seine scheinbare Helligkeit beträgt 14 mag, er ist mit einem mittelgroßen Teleskop im Sternbild Drache (Draco) zu sehen. 2018 startete das Weltraumteleskop TESS, das nach Exoplaneten sucht. Weitere für das nächste Jahrzehnt geplante Missionsstarts mit der Möglichkeit, Exoplaneten zu finden, sind das JWST der NASA sowie WFIRST.

Zur Originalseite

Junge Sterne in der Rho-Ophiuchi-Wolke

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech, WISE

Beschreibung: Wie entstehen Sterne? Um das herauszufinden, schufen Astronomen mit WISE, dem dem Wide-field Infrared Survey Explorer, diese reizende Falschfarben-Komposition in Infrarotwellenlängen mit Staubwolken und eingebetteten, neu entstandenen Sternen. Die kosmische Leinwand zeigt eine der nächstliegenden Sternbildungsregionen, es sind Teile des Wolkenkomplexes um Rho Ophiuchi, der ungefähr 400 Lichtjahre entfernt am südlichen Rand des aussprechbaren Sternbildes Ophiuchus (Schlangenträger) liegt.

Junge Sterne, die in einer großen Wolke aus kaltem molekularem Wasserstoff entstanden sind, heizen den umgebenden Staub auf und sorgen für das infrarote Leuchten. Sterne im Entstehungsprozess, die als junge stellare Objekte oder YSOs bezeichnet werden, sind in die kompakten rosaroten Nebel eingebettet, die man hier sieht. Vor den neugierigen Augen optischer Teleskope sind sie jedoch verborgen.

Eine Untersuchung der Region in durchdringendem Infrarotlicht brachte entstehende und neu entstandene Sterne zum Vorschein, deren Durchschnittsalter auf etwa 300.000 Jahre geschätzt wird. Verglichen mit dem Alter der Sonne von 5 Milliarden Jahren ist das extrem jung. Der auffällige rötliche Nebel rechts unten, der den Stern Sigma Scorpii umgibt, ist ein Reflexionsnebel aus Staub, der Sternenlicht streut.

Diese Ansicht von WISE wurde 2012 veröffentlicht. Sie umfasst an die 2 Grad und bedeckt in der geschätzten Entfernung der Rho-Ophiuchi-Wolke ungefähr 14 Lichtjahre.

Zur Originalseite

Spitzers Orion

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, JPL-Caltech

Beschreibung: Nur wenige kosmische Aussichten regen die Fantasie so an wie der Orionnebel, ein riesiges, etwa 1500 Lichtjahre entferntes Sternbildungsgebiet. Dieses Infrarotbild des Weltraumteleskops Spitzer zeigt etwa 40 Lichtjahre dieser Region und wurde aus Daten erstellt, welche die Helligkeit junger Sterne im Nebel erfassen sollten, von denen viele noch von staubigen, Planeten bildenden Scheiben umgeben sind.

Orions junge Sterne sind nur etwa eine Million Jahre alt, das Alter der Sonne beträgt im Vergleich dazu 4,6 Milliarden Jahre. Die heißesten Sterne der Region befinden sich im Trapezhaufen, dieser ist der hellste Haufen nahe der Bildmitte.

Spitzer wurde am 25. August 2003 in eine Umlaufbahn um die Sonne gestartet. Das Kühlmittel des Teleskops – flüssiges Helium – ging im Mai 2009 zur Neige. Das Infrarot-Weltraumteleskop wird jedoch weiter betrieben, das Ende seiner Mission ist für 30. Januar 2020 vorgesehen. Diese Falschfarbenansicht wurde 2010 in zwei Kanälen aufgenommen, die trotz Spitzers wärmerer Betriebstemperatur immer noch für Infrarotlicht empfindlich sind.

Zur Originalseite

Elemente des Nachleuchtens

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA/CXC/SAO

Beschreibung: Massereiche Sterne verbrennen im Laufe ihres kurzen Lebens rasend schnell Kernbrennstoff. Durch Fusion werden bei extremen Temperaturen und Dichten um den Sternkern herum die Kerne leichter Elementen wie Wasserstoff und Helium zu schwereren Elementen wie Kohlenstoff, Sauerstoff etc. kombiniert – in einer Reihe, die mit Eisen endet. Daher schleudert eine Supernovaexplosion – das unvermeidliche und spektakuläre Ende eines massereichen Sterns – Überreste in den Weltraum zurück, die mit schwereren Elementen angereichert sind, welche später in andere Sterne und Planeten (und Menschen!) eingebaut werden.

Dieses detailreiche Falschfarben-Röntgenbild des Chandra-Observatoriums im Orbit zeigt so eine heiße, expandierende stellare Trümmerwolke, die etwa 36 Lichtjahre groß ist. Dieser junge Supernovaüberrest ist als G292.0+1.8 katalogisiert und liegt im südlichen Sternbild Zentaur. Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde vor ungefähr 1600 Jahren.

Bläuliche Farben zeigen viele Millionen Grad heiße Gasfasern, die besonders viel Sauerstoff, Neon und Magnesium enthalten. Ein punktförmiges Objekt links unter der Mitte auf diesem Chandrabild lässt vermuten, dass im Nachleuchten der anreichernden Supernova auch ein Pulsar entstand – ein rotierender Neutronenstern, Überrest des kollabierten Sternkerns.

Das faszinierende Bild wurde zur 20-Jahresfeier des Röntgenobservatoriums Chandra veröffentlicht.

Zur Originalseite

Fermis Wissenschaftsfinalisten

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Mit der Fermi-Wissenschaftsstichwahl feiern wir 10 Jahre Forschung im Hochenergieuniversum mit dem Gammastrahlen-Weltraumteleskop Fermi. Diese beiden Finalisten haben alle früheren Abstimmungsrunden im Wettbewerb gewonnen und treten als letzte gegeneinander an.

Die beiden digitalen Illustrationen aus einer Liste mit Fermis 16 interessantesten Entdeckungen sind die Spitzenkandidaten des Wettbewerbs, sie setzten sich im Semifinale gegen den 12. Kandidaten „Neue Hinweise auf Dunkle Materie“ und den 14. „Sternbeben in einem Magnetarsturm“ durch. Links sind neu entdeckte, unvorhergesagte Gammastrahlenblasen über und unter der Ebene unserer Milchstraße mit einem Durchmesser von 25.000 Lichtjahren abgebildet. Rechts kollidieren gewaltsam verschmelzende Neutronensterne des ersten Gravitationswellenereignisses, das je durch Gammastrahlen entdeckt wurde.

Wählen Sie eins der Bilder und geben Sie hier Ihre Stimme ab, um das beliebteste wissenschaftliche Ergebnis aus Fermis erster Dekade zu wählen.

Zur Originalseite