Die Staubscheibe um Fomalhaut

Die Infografik zeigt eine Staubscheibe, deren Teile links beschriftet sind, rechts unten sind zwei Einschübe zu sehen. Zu sehen sind die innere Scheibe, die innere Lücke, der dazwischenliegende Gürtel, die äußere Lücke, der äußere Ring und ein Halo. Die Einschübe zeigen einen Staubknoten im äußeren Ring.

Bildcredit: NASA, ESA, CSA, Bearbeitung: András Gáspár (Univ. v. Arizona), Alyssa Pagan (STScI), Wissenschaft: A. Gáspár (Univ. v. Arizona) et al.

Der helle Stern Fomalhaut ist etwa 25 Lichtjahre vom Planeten Erde entfernt. Er liegt im Sternbild Südlicher Fisch (Piscis Austrinus). Forschende entdeckten in den 1980er Jahren erstmals Fomalhauts übermäßige Infrarotemission.

Inzwischen fand man mit Teleskopen im Weltraum und auf der Erde heraus, dass die Quelle der Infrarotstrahlung eine Scheibe aus Staub und Trümmern ist, die den heißen jungen Stern umgibt. Diese Staubscheibe geht mit der fortschreitenden Entstehung eines Planetensystems einher.

Dieses scharfe Infrarotbild der MIRI-Kamera an Bord des Weltraumteleskops James Webb zeigt Fomalhauts Staubscheibe so detailreich wie nie zuvor. Dazu zählt eine große Staubwolke im äußeren Ring, die vielleicht ein Hinweis auf kollidierende Körper ist, weiters eine innere Staubscheibe und Lücken, die wahrscheinlich von eingebetteten, unsichtbaren Planeten geformt und erhalten wird.

Links unten ist ein Maßstabsbalken in Astronomischen Einheiten (AE) angebracht. Eine AE ist die durchschnittliche Entfernung zwischen Erde und Sonne. Der äußere zirkumstellare Staubring von Fomalhaut ist etwa doppelt so weit draußen wie der Kuipergürtel in unserem Sonnensystem. Der Kuipergürtel besteht aus kleinen eisigen Körpern und Trümmern, er befindet sich außerhalb der Neptunbahn.

Zur Originalseite

Der Protostern in L1527

Das Bild zeigt Protostern in der dunklen Wolke L1527 mit sanduhrförmigen Flügeln, es stammt vom James-Webb-Weltraumteleskop.

Bildcredit: ForschungNASA, ESA, CSA, STScI, NIRCam; Bearbeitung – Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI)

Der Protostern in der dunklen Wolke L1527 ist gerade einmal 100.000 Jahre alt und noch in die Wolke aus Gas und Staub eingebettet, die sein Wachstum ermöglicht. Das Bild stammt von der NIRCam des Weltraumteleskops James Webb. Das dunkle Band am Hals des Infrarot-Nebels ist eine dicke Scheibe um das junge stellare Objekt. Diese Scheibe ist etwas größer als unser Sonnensystem und fast genau von der Seite zu sehen. Sie versorgt den Protostern mit Material und verbirgt ihn vor Webbs direkten Infrarotblick.

Der Nebel selbst ist jedoch atemberaubend detailreich abgebildet. Die sanduhrförmigen Hohlräume des Nebels werden vom Infrarotlicht des Protosterns beleuchtet. Sie entstehen durch Materie, die beim Sternbildungsprozess ausgeworfen wird und durch das umgebende Medium pflügt. Wenn der Protostern an Masse gewinnt, wird er schlussendlich ein vollwertiger Stern, der kollabiert, sodass in seinem Inneren die Kernfusion zündet.

Der Protostern in der dunklen Wolke L1527 ist wahrscheinlich ein Analogon zu einem frühen Stadium unserer Sonne und dem Sonnensystem. Er ist etwa 460 Lichtjahre entfernt und liegt in der Taurus-Sternbildungsregion. Webbs NIRCam-Bild umfasst einen Bereich von ungefähr 0,3 Lichtjahre.

Zur Originalseite

GRB 221009A

Das Bild zeigt den Gammablitz GRB 221009A, der mit dem Weltraum-Gammastrahlenteleskop Fermi detektiert wurde.

Bildcredit: NASA, DOE, Fermi-LAT-Arbeitsgemeinschaft

Der Gammablitz GRB 221009A kündigt wahrscheinlich die Entstehung eines neuen Schwarzen Lochs an, das vor langer Zeit im fernen Universum im Kern eines kollabierenden Sterns entstanden ist. Diese Animation wurde aus Daten des Fermi-Gammastrahlen-Weltraumteleskops erstellt, sie zeigt die extrem starke Explosion.

Fermi detektierte die Daten in Gammastrahlenenergie und spürte dabei Photonen mit einer Energie von mehr als 100 Millionen Elektronenvolt auf. Im Vergleich dazu haben Photonen in sichtbarem Licht eine Energie von etwa 2 Elektronenvolt. Links verläuft ein stetiges, energiereiches Gammastrahlenleuchten aus der Ebene unserer Milchstraße quer durch das 20 Grad große Bild. In der Mitte erscheint der flüchtige Gammablitz GRB 221009A und verblasst dann wieder. GRB 221009A war einer der hellsten Gammastrahlenausbrüche, die je detektiert wurden. Was Gammablitze betrifft, ist er relativ nahe, doch mit einer Distanz von etwa 2 Milliarden Lichtjahren ist er immer noch weit entfernt.

Fermis Large Area Telescope (LAT) im niedrigen Erdorbit erfasste die Gammastrahlen-Photonen des Ausbruchs in einem Zeitraum von mehr als 10 Stunden, als die energiereiche Strahlung von GRB 221009A letzten Sonntag, dem 9. Oktober, über den Planeten Erde hinwegfegte.

Zur Originalseite

Eisriese Neptun mit Ringen

Das Bild zeigt eine Aufnahme des Webb-Weltraumteleskops von Neptun mit seinen Ringen und mehreren seiner Monde.

Bildcredit: NASA, ESA, CSA, STScI, NIRCam

Mitten im scharfen Bild seht ihr den Eisriesen Neptun mit seinen Ringen. Es wurde mit dem James-Webb-Weltraumteleskop im nahen Infrarot aufgenommen. Die schwach leuchtende, ferne Welt ist der am weitesten von der Sonne entfernte Planet. Er ist ungefähr 30 Mal weiter draußen als der Planet Erde.

Die dunkle, geisterhafte Erscheinung des Planeten auf der Webb-Ansicht stammt von Methan in der Atmosphäre. Methan absorbiert Infrarotlicht. Wolken in großer Höhe sind im Bild leicht erkennbar. Sie reichen über den Großteil von Neptuns absorbierendem Methan hinauf.

Neptuns größter Mond Triton ist mit gefrorenem Stickstoff überzogen. Er leuchtet im reflektierten Sonnenlicht heller als Neptun. Man erkennt ihn links oben an Webbs charakteristischen Beugungsspitzen. Mit Triton sind sieben von Neptuns 14 bekannten Monden im Sichtfeld erkennbar.

Neptuns blasse Ringe leuchten markant auf diesem neuen Planetenporträt aus dem Weltraum. Seit dem Besuch der Raumsonde Voyager 2 im August 1989 bei Neptun sind hier erstmals wieder Details des komplexen Ringsystems zu sehen.

Zur Originalseite

Das Weltraumteleskop Webb zeigt Jupiter

Das Bild zeigt Jupiter in Infrarotlicht, aufgenommen vom Weltraumteleskop James Webb. Jupiters Wolken sind ungewöhnlich dunkel, darunter leuchtet der Große Rote Fleck, ein Ring, mehrere Monde und ein helles Polarlicht.

Bildcredit: NASA, ESA, CSA, Jupiter-ERS-Team; Bearbeitung: Ricardo Hueso (UPV/EHU) und Judy Schmidt

Dieser neue Blick auf Jupiter ist erhellend. Hoch aufgelöste Infrarotbilder des neuen James-Webb-Weltraumteleskops (Webb) von Jupiter zeigen beispielsweise zuvor unbekannte Unterschiede zwischen hoch schwebenden hellen Wolken wie dem großen Roten Fleck und tief liegenden dunklen Wolken.

Dieses Bild von Webb zeigt auch Jupiters Staubring, helle Polarlichter an den Polen und Jupiters Monde Amalthea und Adrastea. Das Magnetfeld des großen vulkanischen Mondes Io lenkt beim südlichen Polarlicht geladene Teilchen auf Jupiter. Manche Objekte sind so hell, dass das Licht an Webbs Optik merklich gebeugt wird und Streifen bildet.

Webb umrundet die Sonne in der Nähe der Erde und besitzt einen mehr als sechs Meter großen Spiegel. Damit ist es das größte astronomische Teleskop, das je gestartet wurde – mit 15 Mal mehr Lichtsammelfläche als Hubble.

Zur Originalseite

Schärfere Ansicht der Spiralgalaxie M74

Die prächtige Spiralgalaxie Messier 74, auch NGC 628 im Sternbild Fische, zeigt viele Details, die auf früheren Aufnahmen nur angedeutet waren.

Bildcredit: NASA, ESA, CSA, STScI; Bearbeitungs-Bildrechte: Robert Eder

Die prächtige Spiralgalaxie Messier 74 ist auch als NGC 628 bekannt und liegt etwa 32 Millionen Lichtjahre entfernt im Sternbild Fische. Das Inseluniversum besitzt ungefähr 100 Milliarden Sternen und zwei markante Spiralarme. Astronom*innen sehen in M74 schon lange ein perfektes Beispiel einer klassischen Spiralgalaxie.

Die Zentralregion von M74 wurde auf diesem kürzlich bearbeiteten Bild mit öffentlich verfügbaren Daten des Weltraumteleskops James Webb in einen klaren, scharfen Fokus gerückt. Die gefärbte Kombination von Bilddatensätzen stammt von den beiden Webb-Instrumenten NIRcam und MIRI, die in nahen und mittleren Infrarotwellenlängen arbeiten. Es zeigt kühlere Sterne und staubige Strukturen in der klassischen Spiralgalaxie, die auf bisherigen Weltraumaufnahmen nur angedeutet waren.

Zur Originalseite

Webb zeigt Jupiter und Ring in Infrarot

Das Bild zeigt Jupiter im infraroten Licht, aufgenommen vom vom Weltraumteleskop James Webb aufgenommen wurde. Man sieht die Wolken, den Großen Roten Fleck, der hell erscheint, und einen auffälligen Ring um den Riesenplaneten.

Bildcredit: NASA, ESA, CSA, STScI; Bearbeitung und Lizenz: Judy Schmidt

Warum hat Jupiter Ringe? Jupiters Hauptring wurde 1979 von der vorbeifliegenden Raumsonde Voyager 1 der NASA entdeckt, doch sein Ursprung war damals ein Rätsel. Daten der NASA-Raumsonde Galileo, die von 1995 bis 2003 um Jupiter kreiste, bestätigten jedoch die Vermutung, dass dieser Ring durch Meteoroiden-Einschläge auf kleinen, nahe gelegenen Monden entsteht. Wenn zum Beispiel ein kleiner Meteoroid den winzigen Metis trifft, bohrt er sich in den Mond, verdampft und schleudert Schmutz und Staub in einen Orbit um Jupiter.

Dieses Bild des Weltraumteleskops James Webb von Jupiter in Infrarotlicht zeigt nicht nur Jupiter und seine Wolken, sondern auch diesen hellen Ring. Rechts seht ihr Jupiters großen Roten Fleck (GRF) in vergleichsweise hellen Farben, links Jupiters großen Mond Europa in der Mitte von Beugungsspitzen, Europas Schatten fällt neben den GRF. Einige Strukturen im Bild sind noch nicht gut erforscht, unter anderem die scheinbar getrennte Wolkenschicht an Jupiters rechtem Rand.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995)
Deutsche Übersetzung ab 2007
Zur Originalseite

Stephans Quintett von Webb, Hubble und Subaru

Dieses Bild von vier Galaxien in Stephans Quintett entstand aus Bildern der Weltraumteleskope Hubble und James Webb sowie dem Subaru-Teleskop auf Hawaii.

Bildcredit: Webb, Hubble, Subaru; NASA, ESA, NOAJ; Bearbeitung und Bildrechte: Robert Gendler

Warum sollte man nicht Bilder von Webb und Hubble kombinieren können? Man kann, und dieses Bild zeigt das eindrucksvolle Ergebnis. Zwar ist der Spiegel des kürzlich gestarteten Weltraumteleskops James Webb (Webb) größer als der von Hubble, doch es ist auf Infrarotlicht spezialisiert und kann daher kein Blau sehen – es sieht nur bis Orange.

Umgekehrt hat das Weltraumteleskop Hubble (Hubble) einen kleineren Spiegel als Webb, und es sieht nicht so weit ins Infrarote wie Webb. Dafür kann aber nicht nur blaues Licht abbilden, sondern sogar Ultraviolett. Somit können Daten von Webb und Hubble zu Bildern mit einer größeren Vielfalt an Farben kombiniert werden.

Dieses Bild von vier Galaxien in Stephans Quintett verwendet Bilder von Webb in Rot und enthält auch Bilder des bodenbasierten japanischen Subaru-Teleskops auf Hawaii. Da die Bilddaten von Webb, Hubble und Subaru frei zugänglich gemacht wurden, können sie von allen Menschen weltweit bearbeiten werden. Dabei können sogar eindrucksvolle und wissenschaftlich nützliche Montagen aus Daten von mehreren Observatorien entstehen.

Neue Bilder von Stephans Quintett von Webb und Hubble
Zur Originalseite