Die einst geschmolzene Oberfläche der Venus

Das Bild zeigt rot leuchtende Geländestrukturen auf der Venus. Sie wurden mit Radar abgebildet und falschgefärbt. Die Bilder stammen von der Raumsonde Magellan, die mit Radar durch die dichte Atmosphäre blickte.

Bildcredit: E. De Jong et al. (JPL), MIPL, Magellan-Team, NASA

Was würdet ihr sehen, wenn ihr mit Radaraugen auf die Venus blicken könnt? Diese Rekonstruktion der Venusoberfläche wurde mit Computern erstellt. Als Grundlage dienten die Daten der Raumsonde Magellan. Sie umkreiste von 1990 bis 1994 die Venus und kartierte die Oberfläche unseres Nachbarplaneten mit Radar.

Magellan entdeckte viele interessante Details auf der Oberfläche. Dazu zählten die oben gezeigten großen runden Kuppeln. Jede ist etwa 25 Kilometer groß. Die Kuppeln entstanden vermutlich durch Vulkanismus, doch die genaue Entstehung ist nicht bekannt.

Die Oberfläche der Venus ist so heiß und feindselig, dass auf der Oberfläche bisher keine Sonde länger als wenige Minuten funktionsfähig blieb.

Zur Originalseite

Milchstraße und Nachthimmellicht über dem Crater Lake

Über einem Kratersee wölbt sich die Milchstraße wie ein Bogen. Darunter leuchtet grünliches Nachthimmellicht. Am Himmel sind zahlreiche Sternbilder markiert, man sieht sie, wenn man den Mauspfeil über das Bild schiebt.

Bildcredit und Bildrechte: John H. Moore; Beschriftung: Judy Schmidt

Wie viele unterschiedliche astronomische Phänomene zeigt diese Himmelsansicht? Mehrere. Im Vordergrund befindet sich der Crater Lake. Er liegt in einer Caldera, die vor 7700 Jahren durch Vulkanismus auf der Erde entstand. Der See besteht aus Wasser von geschmolzenem Schnee. Der Ursprung des Wassers auf der Erde ist allgemein nicht gesichert. Es stammt möglicherweise von urzeitlichen Erdeinschlägen eishaltiger Körper.

Das grüne Leuchten am Himmel ist Nachthimmellicht. Dieses Licht wird von Atomen hoch oben in der Erdatmosphäre abgestrahlt. Sie rekombinieren nachts, nachdem sie tagsüber vom energiereichen Sonnenlicht ionisiert wurden.

Die vielen Lichtpunkte am Himmel leuchten durch Kernfusion. Sie sich weit von der Atmosphäre entfernt, aber innerhalb der Milchstraße in der Nähe unserer Sonne.

Zu guter Letzt: Der helle Bogen im Bild ist das Zentralband der Milchstraße. Es ist durchschnittlich viel weiter entfernt als die nahen Sterne und hauptsächlich durch Gravitation geformt. Das Milchstraßenband leuchtet – anders, als es scheint – von selbst. Es wird nicht vom Nachthimmellicht erhellt. Das Panorama entstand aus sechs Aufnahmen. Sie wurden vor etwa zwei Wochen im US-amerikanischen Bundesstaat Oregon fotografiert.

Zur Originalseite

Die Richat-Struktur auf der Erde

Die 50 Kilometer gro0e Guelb er Richat (Richat-Struktur) in der Sahara in Mauretanien ist vom Weltall aus leicht sichtbar.

Bildcredit: NASA / GSFC METI Japan Space Systems und das U.S. / Japan ASTER Science Team

Was ist das bloß? Die Guelb er Richat (Richat-Struktur) in der Sahara in Mauretanien ist vom Weltall aus leicht sichtbar. Sie ist fast 50 Kilometer groß. Früher hielt man die Richat-Struktur für einen Einschlagkrater. Doch ihre flache Mitte und das Fehlen von Impaktiten legt eine andere Entstehung nahe.

Eine Entstehung der Richat-Struktur durch eine Vulkaneruption scheint ebenfalls unwahrscheinlich, weil es keine Kuppe aus Eruptiv- und Vulkangestein gibt. Heute geht man davon aus, dass das geschichtete Sedimentgestein der Richat-Struktur durch angehobenes Gestein entstand und von Erosion geformt wurde.

Dieses Bild wurde von den ASTER-Instrumenten an Bord des Satelliten Terra in der Umlaufbahn aufgenommen. Warum die Richat-Struktur fast kreisförmig ist, bleibt ein Rätsel.

Zur Originalseite

Milchstraße und Steinbaum

Neben der Milchstraße steht eine ikonische Felssäule, ein Wahrzeichen auf der kanarischen Insel Teneriffa.

Bildcredit und Bildrechte: Daniel López (El Cielo de Canarias)

Was steht da neben der Milchstraße? Das ungewöhnliche Felsgebilde ist als Roque Cinchado oder Steinbaum bekannt. Es steht auf der spanischen Kanareninsel Teneriffa. Der Roque Cinchado ist ein berühmtes Wahrzeichen. Er ist wahrscheinlich ein dichter Pfropfen aus erstarrtem vulkanischem Magma, der übrig blieb, als das weichere Gestein, das ihn umgab, wegerodierte.

Majestätisch wölbt sich das zentrale Band unserer Milchstraße rechts über das Panorama. Es ist ein Mosaik aus sieben Bildern, die im Sommer 2010 fotografiert wurden. Rechts schwebt eine Lenticularis über dem Gipfel des Vulkans Teide.

Zur Originalseite

Der Vulkan Sakurajima mit Blitzen

Aus einer vulkanischen Aschewolke mit rot glühender Lava schlagen Blitze.

Bildcredit und Bildrechte: Martin Rietze (Alien Landscapes on Planet Earth)

Warum entstehen bei einem Vulkanausbruch manchmal Blitze? Das Bild zeigt den Vulkan Sakurajima im Süden von Japan. Der Ausbruch wurde im Jänner fotografiert. Die ausgeschleuderten Magmablasen sind so heiß, dass sie leuchten. Von unten bricht flüssiges Gestein durch den Vulkangipfel.

Das Bild ist interessant, weil es Blitze in der Nähe des Vulkangipfels zeigt. Warum Blitze entstehen, wird auch bei gewöhnlichen Gewittern immer noch erforscht. Die Ursache vulkanischer Blitze ist noch rätselhafter.

Blitze gleichen getrennte Bereiche mit entgegengesetzter elektrischer Ladung aus. Eine Hypothese vermutet, dass ausbrechende Magmablasen oder vulkanische Asche elektrisch geladen sind, und dass ihre Bewegung diese getrennten Bereiche mit gegensätzlicher Ladung erzeugt. Andere vulkanische Blitzereignisse entstehen vielleicht durch Kollisionen im Vulkanstaub, bei denen Ladungen induziert werden.

Normalerweise entsteht mehr als 40 Mal pro Sekunde irgendwo auf der Erde ein Blitz.

Zur Originalseite

Ppanorama der Milchstraße vom Mauna Kea

Das breite Panorama zeigt die Milchstraße, die sich über dem Horizont zwischen zwei Teleskopkuppeln ausbreitet. Links steht das Canada-France-Hawaii-Teleskop CFHT, rechts das Observatorium Gemini Nord.

Bildcredit und Bildrechte: Wally Pacholka (TWAN)

Aloha und willkommen in einer atemberaubenden Himmelslandschaft. Das traumhafte Panorama reicht vom 4200 Meter hohen Vulkangipfel des Mauna Kea auf Hawaii über eine Wolkenschicht bis zum gestirnten Nachthimmel und der Milchstraße. Die Szene ist links an der Kuppel des Canada-France-Hawaii-Teleskops CFHT verankert. Der Polarstern leuchtet rechts unter der Kuppel.

Weiter rechts führt der helle Stern Deneb zum Asterismus Kreuz des Nordens. Er ist in die Ebene der Milchstraße über dem Horizont eingebettet. Das Kreuz des Nordens und die gleißende, weiße Wega hängen über einigen Aschekegeln im Vordergrund. In der Mitte leuchten rötliche Nebel, Sterne und Staubwolken in der zentralen Milchstraße.

Unten wirft die Stadtbeleuchtung von Hilo ein schauriges grünliches Licht an die Wolken. Der rote Überriese Antares strahlt über der zentralen Wölbung der Milchstraße. Der helle Alpha Centauri liegt noch weiter rechts in der galaktischen Ebene. Rechts steht das große Observatorium Gemini Nord. Die kompakte Sternengruppe Kreuz des Südens ist links neben der Teleskopkuppel.

Braucht ihr Hilfe, um die Sterne zu erkennen? Schiebt einfach den Mauspfeil über das Bild oder betrachtet dieses beschriftete Panorama.

Zur Originalseite

Polarlicht über dem White-Dome-Geysir

Aus einer Felsspalte strömt eine weiße Gasfahne. Dahinter schimmern grüne und rote Polarlichter, durch die Sterne zu sehen sind. Die Landschaft wird vom Mond beleuchtet.

Bildcredit und Bildrechte: Robert Howell

Manchmal brechen Himmel und Erde gleichzeitig aus. Zu Beginn des Monats traten unerwartet farbenprächtige Polarlichter auf. Am Horizont leuchteten grüne Nordlichter, hoch oben strahlten gleißende Bänder roter Polarlichter. Der Mond erhellte den Vordergrund der malerischen Szene. In weiter Ferne leuchteten vertraute Sterne.

Der sorgfältige Astrofotograf plante dieses Bildmosaik und fotografierte es im Feld des White-Dome-Geysirs. Er befindet sich im Yellowstone-Nationalpark im Westen der USA. Tatsächlich brach kurz nach Mitternacht der White Dome aus und schleuderte einen Schwall Wasser und Dampf meterhoch in die Luft. Das Wasser des Geysirs wird mehrere Kilometer unter der Oberfläche von glühendem Magma zu Dampf erhitzt. Dann steigt es durch Felsspalten zur Oberfläche auf.

Etwa die Hälfte aller bekannten Geysire befinden sich im Yellowstone-Nationalpark. Der geomagnetische Sturm, der diese Polarlichter erzeugte, ist bereits abgeflaut. Doch der White-Dome-Geysir bricht weiterhin alle 30 Minuten aus.

Zur Originalseite

Asche und Blitze über einem isländischen Vulkan

Vor einem dunkelblauen Himmel mit wenigen kurzen Strichspuren ragt eine bedrohliche dunkle Aschewolke auf einem verschneiten Berg auf. Aus der Wolke zucken heftige Blitze.

Bildcredit und Bildrechte: Sigurður Stefnisson

Warum entstand bei dem Vulkanausbruch 2010 auf Island so viel Asche? Die Größe der riesigen Aschewolke war zwar nicht ungewöhnlich, doch ihre Lage war sehr auffällig, weil sie über dicht besiedelte Regionen trieb.

Der Vulkan Eyjafjallajökull im Süden von Island begann brach am 20. März 2010 aus. Ein zweiter Ausbruch begann am 14. April 2010 unter der Mitte eines kleinen Gletschers. Keiner der Ausbrüche war ungewöhnlich stark. Doch der zweite Ausbruch schmolz eine große Menge Gletschereis, das abkühlte und die Lava in grobkörnige Teilchen aufsplitterte. Diese Teilchen wurden mit der aufsteigenden Vulkanaschewolke hochgetragen.

Das Bild entstand beim zweiten Ausbruch. Blitze beleuchten Asche, die aus dem Vulkan Eyjafjallajökull aufsteigt.

Zur Originalseite