Illustris-Simulation des Universums

Videocredit: Illustris-Arbeitsgemeinschaft, NASA, PRACE, XSEDE, MIT, Harvard CfA; Musik: The Poisoned Princess (Media Right Productions)

Wie sind wir hierher gekommen? Klickt auf den Pfeil, lehnt euch zurück und seht zu. Diese neue Computersimulation zeigt die Entstehung des Universums. Es ist die größte und anspruchsvollste Simulation, die je erstellt wurde. Sie liefert neue Erkenntnisse zur Bildung von Galaxien und bietet neue Perspektiven zum Platz der Menschheit im Universum.

Das Illustris-Projekt ist das bisher größte seiner Art. Es verbrauchte 20 Millionen CPU-Stunden. Dabei verfolgte es 12 Milliarden Auflösungselemente in einem Würfel mit einer Kantenlänge von 35 Millionen Lichtjahren. Die berechnete Entwicklungszeit umfasst 13 Milliarden Jahre. Die Simulation veranschaulicht erstmals, wie aus Materie eine große Vielfalt an Galaxientypen entsteht.

Während sich das virtuelle Universum entwickelt, kondensiert bald durch Gravitation ein Teil der Materie, die mit dem Universum expandiert. Das Material bildet Filamente, Galaxien und Galaxienhaufen.

Das Video zeigt die Perspektive einer virtuellen Kamera, die einen Teil des Universums umkreist, während sich dieses verändert. Zuerst zeigt sie die Entwicklung Dunkler Materie. Dann folgt Wasserstoff, der nach Temperatur codiert ist (0:45). Später sind schwere Elemente wie Helium und Kohlenstoff zu sehen (1:30). Schließlich kehrt die Kamera zu Dunkler Materie zurück (2:07).

Links unten ist die Zeit gelistet, die seit dem Urknall vergangen ist. Rechts unten ist die Art der gezeigten Materie zu lesen. Explosionen (0:50) zeigen Galaxienzentren mit sehr massereichen Schwarzen Löchern. Sie werfen Blasen aus heißem Gas aus. Es gibt interessante Unstimmigkeiten zwischen Illustris und dem realen Universum. Nun wird untersucht, warum die Simulation zum Beispiel ein Übermaß an alten Sternen erzeugt.

Zur Originalseite

Kosmische Wirbel in der Mikrowellenkarte: Hinweis auf Inflation

In der eisigen Landschaft am Südpol steht das Mikrowellen-Observatorium Background Imaging of Cosmic Extragalactic Polarization 2 (BICEP2). Es ist am Dach des Gebäudes montiert. Der Bildeinschub rechts oben zeigt Polarisationsmuster vor Temperaturspitzen im Mikrowellenhintergrund.

Bildcredit: BICEP2-Arbeitsgemeinschaft, NSF, Steffen Richter (Harvard)

Gab es in der Geschichte des Universums einen frühen Zeitabschnitt mit extrem schneller Ausdehnung? So ein inflationärer Zeitraum wurde postuliert. Er sollte einige rätselhafte Eigenschaften des Kosmos erklären. Eine dieser Eigenschaften ist, dass unser Universum in entgegengesetzten Richtungen ähnlich aussieht.

Gestern wurden Ergebnisse veröffentlicht. Sie zeigen einen überraschend starken erwarteten Hinweis. Er besagt, dass es in der kosmischen Mikrowellen-Hintergrundstrahlung charakteristische Polarisationsmuster geben sollte. Das stützt die Vorhersage der Inflation.

Die Hintergrundstrahlung ist Licht, das vor 13,8 Milliarden Jahren abgestrahlt wurde. Damals wurde das Universum erstmals durchsichtig. Diese frühen Wirbelmuster werden als B-Modus-Polarisationen bezeichnet. Sie können direkt auf Druck- und Dehnungseffekte zurückgeführt werden. Diese Effekte üben Gravitationswellen auf Elektronen aus, die Photonen abstrahlen.

Die überraschenden Ergebnisse fand man in Daten des Mikrowellen-Observatoriums Background Imaging of Cosmic Extragalactic Polarization 2 (BICEP2). Das Observatorium steht nahe beim Südpol. BICEP2 ist die Schüsselantenne auf dem Gebäude.

Der Bildeinschub zeigt eine Mikrowellen-Himmelskarte. Die schwarzen Polarisationsvektoren wirbeln scheinbar um die farbigen Temperaturspitzen. Die Schlussfolgerungen sind zwar statistisch schlüssig. Doch sie bleiben umstritten, solange man in unabhängigen Beobachtungen nach einer Bestätigung sucht.

Zur Originalseite

Die Größe des Universums – interaktiv

Link zur Animation: htwins.net/scale2

Credit und Rechte der Flash-Animation: Cary und Michael Huang

Wie sieht das Universum im kleinen Maßstab aus? Oder im großen? Das Universum sieht in jeder Größenordnung, welche die Menschheit erkundet hat, ganz anders aus. Zum Beispiel ist – unserer Kenntnis nach – jedes winzige Proton genau gleich. Doch jede riesige Galaxie sieht anders aus.

Betrachten wir vertrautere Größenordnungen. Die Oberfläche eines kleinen Glastisches ist für eine Staubmilbe eine gewaltige, seltsam glatte Ebene, manchmal von Zellbrocken übersät. Nicht alle Längenmaßstäbe sind gut untersucht. Zum Beispiel wird erforscht, was mit den winzigen Tröpfchen beim Niesen geschieht. Das Ergebnis hilft vielleicht, die Ausbreitung von Krankheiten einzudämmen.

Diese interaktive Fash-Animation ist eine moderne Version des klassischen Videos Zehn hoch. Es zeigt einen neuen Blick auf viele bekannte Größenordnungen im Universum. Wenn ihr den Scrollbalken am unteren Rand verschiebt, seht ihr eine Vielfalt an Größenordnungen. Ein Klick auf ein einzelnes Objekt zeigt seine Beschreibung.

Zur Originalseite

Flug durch das Hubble Ultra Deep Field

Videocredit: NASA, ESA, F. Summers, Z. Levay, L. Frattare, B. Mobasher, A. Koekemoer und das HUDF-Team (STScI)

Wie sieht es aus, wenn man durch das ferne Universum fliegt? Ein Team Weltraumforschender wollte das herausfinden. Dazu schätzten sie die relativen Entfernungen von mehr als 5000 Galaxien in einem der am weitesten entfernten Galaxienfelder, die je fotografiert wurden: dem Hubble Ultra Deep Field (HUDF).

Licht braucht extrem lange, um das Universum zu durchqueren. Daher sind die meisten Galaxien im Video noch im Prozess der Entstehung. Das Universum hatte damals nur einen Bruchteil seines aktuellen Alters erreicht. Viele Galaxien sind daher ungewöhnlich geformt, wenn man sie mit aktuellen Galaxien vergleicht. Hier existieren noch keine voll entwickelten Spiralgalaxien wie unsere Milchstraße oder die Andromedagalaxie.

Gegen Ende des Videos fliegen wir an den fernsten Galaxien im HUDF vorbei. Deren gemessene Rotverschiebung beträgt mehr als 8. Diese frühe Galaxienklasse mit geringer Leuchtkraft enthielt wahrscheinlich sehr energiereiche Sterne. Ihr Licht verwandelte einen Großteil der verbleibenden gewöhnlichen Materie im Universum von kaltem Gas in heißes, ionisiertes Plasma.

Zur Originalseite

Eine schärfere Ansicht von NGC 3370

Die Galaxie NGC 3370 liegt schräg von oben sichtbar im Bild, im Hintergrund sind weiter entfernte Galaxien zu sehen. Das Bild stammt von der ACS des Weltraumteleskops Hubble.

Bildcredit: NASA, ESA, Hubble-Vermächtnis (STScI/AURA); Danksagung: A. Reiss et al. (JHU)

Die Spiralgalaxie NGC 3370 ist fast gleich groß wie unsere Milchstraße und hat einen ähnlichen Aufbau. Sie ist etwa 100 Millionen Lichtjahre entfernt und liegt im Sternbild Löwe. Die schöne Spirale ist von oben sichtbar. Die Advanced Camera for Surveys (ACS) des Weltraumteleskops Hubble bildete die Galaxie sehr detailreich ab. Sie ist ein Blickfang. Das scharfe Bild zeigt auch einige Galaxien im Hintergrund im fernen Universum.

Die Bilddaten von NGC 3370 erwiesen sich als scharf genug, um einzelne veränderliche Sterne zu untersuchen, die als Cepheiden bekannt sind. Mit diesen kann man die Entfernung dieser Galaxie genau bestimmen. NGC 3370 wurde für diese Untersuchung ausgewählt, weil sich 1994 darin eine gut erforschte Sternexplosion ereignete – eine Supernova vom Typ Ia.

Wenn man die Entfernung, die anhand der Cepheiden-Messungen bestimmt wurde, und die Standardkerzen-Supernova mit Beobachtungen weiter entfernter Supernovae kombiniert, kann man die Größe und Ausdehnungsrate des ganzen Universums kalibrieren.

Zur Originalseite

Rotverschiebungs-Wertetabelle unseres Universums

Die umfangreiche Grafik listet Werte der Rotverschiebung. Beschreibung im Text.

Bildcredit: Sergey V. Pilipenko (LPI, MIPT)

Wie weit ist „Rotverschiebung z=6“ entfernt? Zwar sind Menschen mit Entfernung und Zeit vertraut. Doch was man bei astronomischen Objekten misst, ist eigentlich die Rotverschiebung. Das ist eine Farbabweichung, die davon abhängt, wie sich die Energiedichte in unserem Universum entwickelt hat.

In den letzten Jahren führten kosmologische Messungen zu einer Einigung darüber, welche Energieformen unser Universum durchdringen. Daher konnte man eine einfache Tabelle erstellen, in der die beobachtete kosmologische Rotverschiebung z mit dem Standardkonzept von Zeit und Entfernung in Relation gesetzt wurde. Das gilt auch für die hochgerechnete Zeit, die vergangen ist, seit das Universum entstand.

So eine Tabelle ist oben dargestellt. Die Rotverschiebung z kann man in der ersten und in der letzten Spalte ablesen. Das entsprechende Alter des Universums in Milliarden Jahren steht in der mittleren Spalte. Die Bedeutung der übrigen Spalten ist in einer technischen Abhandlung beschrieben.

Sterne in unserer Galaxis haben eine kosmologische Rotverschiebung z=0. Doch die fernsten Supernovae ereignen sich anscheinend außerhalb einer Rotverschiebung z=1. Damit explodierten sie laut dem Diagramm, als das Universum etwa die Hälfte des heutigen Alters erreicht hatte. Die fernsten Gammablitze, die man bisher beobachtet hat, ereignen sich außerhalb einer Rotverschiebung z=6. Damals war das Universum weniger als eine Milliarde Jahre alt. Das sind weniger als 10 Prozent seines jetzigen Alters.

Zur Originalseite

Planck kartiert den kosmischen Mikrowellenhintergrund

Auf schwarzem Hintergrund ist eine ovale Karte abgebildet. Die Grundfarbe ist Hellblau, sie ist von orange-roten und blauen Flecken überzogen.

Bildcredit: Europäische Weltraumagentur ESA, Planck Collaboration

Woraus besteht unser Universum? Um das herauszufinden, startete die ESA den Satelliten Planck. Dieser kartierte leichte Temperaturunterschiede in der ältesten bekannten Oberfläche so detailreich wie nie zuvor. Es ist der Himmelshintergrund, der vor Milliarden Jahren zurückblieb, als unser Universum erstmals für Licht durchlässig wurde.

Der kosmische Mikrowellenhintergrund in alle Richtungen beobachtbar. Es ein komplexer Bildteppich, der heiße und kalte Muster zeigt. Diese Muster sind nur dann zu beobachten, wenn das Universum aus bestimmten Arten von Energie besteht, die sich in einer gewissen Weise entwickelte.

Die Ergebnisse wurden letzte Woche veröffentlicht. Sie bestätigen erneut, dass ein Großteil des Universums hauptsächlich aus geheimnisvoller und fremdartiger Dunkler Energie besteht. Sogar ein Großteil der restlichen Materie ist eigenartig dunkel.

Außerdem zeigen die Planck-Daten, dass das Universum 13,81 Milliarden Jahre alt ist. Damit ist es nur wenig älter, als mit zahlreichen anderen Instrumenten geschätzt wurde. Zu diesen früheren Instrumenten zählt etwa der WMAP-Satellit der NASA. Die Ausdehnungsrate des Universums beträgt 67,3 (+/- 1,2) km/s/Mpc. Das ist etwas weniger, als früheren Schätzungen ergaben.

Einige Besonderheiten dieser Himmelskarte bleiben rätselhaft. Es ist ungeklärt, warum die Temperaturschwankungen auf einer Himmelshälfte anscheinend etwas größer sind als auf der anderen Seite.

Zur Originalseite

Unsere Geschichte in einer Minute

Videocredit und -rechte: MelodySheep, Symphony of Science, John Boswell; Musikrechte: Our Story

Könnt ihr die Geschichte der Menschheit in einer Minute erzählen? Dieses spannende Video versucht das. Es fügt kleine, vielsagender Schnipsel zusammen und untermalt sie mit Musik.

Das Video zeigt eine künstlerische Animation des Urknalls. Dann folgt eine Reise durch das frühe Universum. Die Entstehung von Erde und Mond und die Genese vielzelliger Lebewesen und Pflanzen ist der nächste Schritt. Der Aufstieg der Reptilien und Dinosaurier endet mit einem verheerenden Meteoriteneinschlag. Er ermöglichte den Aufstieg von Säugetieren und Menschen und schließlich einer modernen Zivilisation.

Der Minutenfilm endet mit dem Flug über einen Wolkenkratzer und einem Menschen, der auf dem Gipfel eines schneebedeckten Berges steht. Die Animation ist das neueste Werk des Symphony-of-Science-Projekts.

Galerie der totalen Sonnenfinsternis
Kennt ihr den Wolkenkratzer bei 1:18 und den schneebedeckten Berg bei 1:25?

Zur Originalseite