Zehn Hoch

Videocredit und -rechte: Charles und Ray Eames (Eames Office)

Wie unterscheidet sich das Universum im kleinen, mittleren und großen Maßstab? Der Film „Zehn Hoch“ aus den 1960er-Jahren war der berühmteste Wissenschafts-Kurzfilm seiner Zeit. Er zeigt atemberaubende Vergleiche. Inzwischen wurde er offiziell auf YouTube veröffentlicht. Er ist oben verlinkt. Klickt auf den Pfeil, dann beginnt der neun Minuten lange Kurzfilm.

Ausgehend von einer Picknickdecke in der Nähe von Chicago zoomt Film auswärts. Er zieht am Virgo-Galaxienhaufen vorbei. Alle zehn Sekunden erscheint ein Quadrat, dessen Seiten zehnmal länger sind als die vorigen. Dann läuft das Video in die andere Richtung. Es zoomt alle zwei Sekunden um den Faktor zehn zurück und endet bei einem einzelnen Proton.

Der Ablauf von „Zehn Hoch“ basiert auf dem Buch „Cosmic View“ von Kees Boeke aus dem Jahr 1957. Ebenfalls Ende der 1960er-Jahre entstand der ähnliche, aber großteils animierte Film „Cosmic Zoom„.

Die veränderliche Perspektive ist spannend und informativ. Abschnitte des Films wurden mit moderner Computertechnik neu erstellt. Dazu gehören die ersten Minuten des Films „Contact“ oder das kurze Digitalvideo „The Known Universe„. Es wurde 2010 für das Amerikanische Naturkundemuseum erstellt. Die Produzenten des Films waren Ray und ihr Ehemann Charles Eames. Sie waren ziemlich visionär und erfanden auch einen berühmten Sessel.

Zur Originalseite

Die Grand-Design-Spiralgalaxie M100

Die Spiralgalaxie M100 im Haar der Berenike ist eine Grand-Design-Spiralgalaxie. Kennzeichen dieser Galaxiengruppe sind ausladende, prachtvolle Spiralgalaxien, eine relativ ebenmäßige Erscheinung und ausgeprägte junge Sternhaufen.

Bildcredit: Hubble-Vermächtnisarchiv, NASA, ESABearbeitung und Lizenz: Judy Schmidt

Die Galaxie M100 ist majestätisch in einem wahrhaft kosmischen Maßstab. Sie ist passenderweise als Grand-Design-Spiralgalaxie klassifiziert. Die große Galaxie besitzt mehr als 100 Milliarden Sterne und klar definierte Spiralarme. Sie ähnelt unserer Milchstraße.

M100 ist auch als NGC 4321 katalogisiert und eine der hellsten Galaxien im Virgo-Galaxienhaufen. Sie ist 56 Millionen Lichtjahre von uns entfernt und befindet sich im Sternbild Haar der Berenike (Coma Berenices). Dieses Bild von M100 entstand 2006 mit dem Weltraumteleskop Hubble. Es zeigt helle, blaue Sternhaufen und komplexe gewundene Staubbahnen. Beides sind Kennzeichen dieser Galaxienklasse.

Die Untersuchung veränderlicher Sterne in M100 spielte eine wichtige Rolle bei der Bestimmung von Größe und Alter des Universums. Wenn ihr genau wisst, wo ihr suchen müsst, findet ihr einen kleinen Fleck. Er ist das Lichtecho einer hellen Supernova. Sie wurde wenige Monate vor Aufnahme dieses Bildes entdeckt.

Zur Originalseite

Collage des Mittelwerts: Hubbles 100 beste Bilder

Das Bild wirkt wolkig. Es ist eine abstrakte digitale Kombination der 100 besten Bilder des Weltraumteleskops Hubble.

Bildcredit und Bildrechte: Michael West (Maria-Mitchell-Observatorium)

Während ihr an eurem Kosmisch-Latte nippt, seht ihr 100 Bilder des Weltraumteleskops Hubble gleichzeitig. Die bekanntesten Szenen im Kosmos wurden im niedrigen Erdorbit abgebildet und digital zu dieser Collage kombiniert.

Dafür wurden die besten 100 Bilder von Hubble ausgewählt und auf identische Pixelmaße skaliert. An jedem Punkt wurden die 100 Pixelwerte vom niedrigsten zum höchsten Wert sortiert. Für das Ergebnisbild wurde der mittlere Wert oder Median ausgewählt. Das kombinierte Bild ist eine visuelle Abstraktion. Es ist Licht aus dem Universum, umgeben von Dunkelheit.

Zur Originalseite

Holometer: Ein Mikroskop in Zeit und Raum

Das Bild zeigt einen Spiegel des Holometers, das sich am Fermi National Accelerator Laboratory (Fermilab) befindet. Es soll herausfinden, ob es einen Grundtyp holografischer Schwankungen gibt.

Bildcredit: C. Hogan, Fermilab

Wie stark unterscheiden sich Raum und Zeit in einem sehr kleinen Maßstab? Im Bereich der winzigen Planck-Einheiten treten Quanteneffekte in den Vordergrund, die normalerweise nicht wahrnehmbar sind. Um diesen ungewohnten Bereich zu erforschen, nahm ein neu entwickeltes Instrument seinen Betrieb auf. Es wird als Holometer bezeichnet und befindet sich am Fermi National Accelerator Laboratory (Fermilab). Das Fermilab befindet sich in der Nähe von Chicago im US-Bundesstaat Illinois.

Das Instrument soll herausfinden, ob leichte, gleichzeitige Erschütterungen eines Spiegels in zwei Richtungen einen Grundtyp holografischer Schwankungen zutage fördern, der immer einen Mindestwert übersteigt. Oben seht ihr einen Endspiegel des Holometer-Prototyps.

Die Entdeckung eines holografischen Rauschens wäre sicherlich bahnbrechend. Doch die Abhängigkeit solcher Schwankungen von einer spezifischen Laborlängenskala würde manche Leute, die sich für die Raumzeit interessieren, überraschen.

Ein Grund dafür ist die Lorentz-Invarianz, die in Einsteins spezieller Relativitätstheorie postuliert wurde. Sie besagt, dass alle Längenskalen relativ zu einem bewegten Beobachter verkürzt erscheinen, sogar die winzige Planckskala. Das Experiment ist einzigartig. Viele warten neugierig, was dabei herauskommt.

Zur Originalseite

CMB-Dipol: Durchs Universum rasen

Die Karte zeigt, mit welcher Geschwindigkeit sich die Erde und ihre Umgebung im Vergleich zum kosmischen Mikrowellenhintergrund bewegen. Die Bewegungsrichtung verläuft von rot nach blau.

Bildcredit: DMR, COBE, NASA, Vier-Jahres-Himmelskarte

Unsere Erde steht nicht still. Sie bewegt sich um die Sonne. Die Sonne umrundet das Zentrum der Galaxis. Die Galaxis kreist um die Galaxien der Lokalen Gruppe. Die Lokale Gruppe stürzt zum Virgo-Galaxienhaufen. Doch diese Geschwindigkeiten sind viel kleiner als jene, mit der sich all diese Objekte zusammen relativ zur kosmischen Mikrowellen-Hintergrundstrahlung (CMBR) bewegen.

Diese Karte zeigt den ganzen Himmel. Sie wurde mit dem Satelliten COBE erstellt. Darauf erscheint die Strahlung in der Bewegungsrichtung der Erde blauverschoben und somit heißer. Dagegen ist Strahlung von der gegenüberliegenden Himmelsrichtung rotverschoben und kühler.

Die Karte lässt darauf vermuten, dass sich die Lokale Gruppe relativ zu dieser Ursprungsstrahlung mit etwa 600 Kilometern pro Sekunde bewegt. Diese hohe Geschwindigkeit war unerwartet. Ihre Größe ist immer noch ein Rätsel. Warum rasen wir so schnell? Was ist da draußen?

Zur Originalseite

Illustris-Simulation des Universums

Videocredit: Illustris-Arbeitsgemeinschaft, NASA, PRACE, XSEDE, MIT, Harvard CfA; Musik: The Poisoned Princess (Media Right Productions)

Wie sind wir hierher gekommen? Klickt auf den Pfeil, lehnt euch zurück und seht zu. Diese neue Computersimulation zeigt die Entstehung des Universums. Es ist die größte und anspruchsvollste Simulation, die je erstellt wurde. Sie liefert neue Erkenntnisse zur Bildung von Galaxien und bietet neue Perspektiven zum Platz der Menschheit im Universum.

Das Illustris-Projekt ist das bisher größte seiner Art. Es verbrauchte 20 Millionen CPU-Stunden. Dabei verfolgte es 12 Milliarden Auflösungselemente in einem Würfel mit einer Kantenlänge von 35 Millionen Lichtjahren. Die berechnete Entwicklungszeit umfasst 13 Milliarden Jahre. Die Simulation veranschaulicht erstmals, wie aus Materie eine große Vielfalt an Galaxientypen entsteht.

Während sich das virtuelle Universum entwickelt, kondensiert bald durch Gravitation ein Teil der Materie, die mit dem Universum expandiert. Das Material bildet Filamente, Galaxien und Galaxienhaufen.

Das Video zeigt die Perspektive einer virtuellen Kamera, die einen Teil des Universums umkreist, während sich dieses verändert. Zuerst zeigt sie die Entwicklung Dunkler Materie. Dann folgt Wasserstoff, der nach Temperatur codiert ist (0:45). Später sind schwere Elemente wie Helium und Kohlenstoff zu sehen (1:30). Schließlich kehrt die Kamera zu Dunkler Materie zurück (2:07).

Links unten ist die Zeit gelistet, die seit dem Urknall vergangen ist. Rechts unten ist die Art der gezeigten Materie zu lesen. Explosionen (0:50) zeigen Galaxienzentren mit sehr massereichen Schwarzen Löchern. Sie werfen Blasen aus heißem Gas aus. Es gibt interessante Unstimmigkeiten zwischen Illustris und dem realen Universum. Nun wird untersucht, warum die Simulation zum Beispiel ein Übermaß an alten Sternen erzeugt.

Zur Originalseite

Kosmische Wirbel in der Mikrowellenkarte: Hinweis auf Inflation

In der eisigen Landschaft am Südpol steht das Mikrowellen-Observatorium Background Imaging of Cosmic Extragalactic Polarization 2 (BICEP2). Es ist am Dach des Gebäudes montiert. Der Bildeinschub rechts oben zeigt Polarisationsmuster vor Temperaturspitzen im Mikrowellenhintergrund.

Bildcredit: BICEP2-Arbeitsgemeinschaft, NSF, Steffen Richter (Harvard)

Gab es in der Geschichte des Universums einen frühen Zeitabschnitt mit extrem schneller Ausdehnung? So ein inflationärer Zeitraum wurde postuliert. Er sollte einige rätselhafte Eigenschaften des Kosmos erklären. Eine dieser Eigenschaften ist, dass unser Universum in entgegengesetzten Richtungen ähnlich aussieht.

Gestern wurden Ergebnisse veröffentlicht. Sie zeigen einen überraschend starken erwarteten Hinweis. Er besagt, dass es in der kosmischen Mikrowellen-Hintergrundstrahlung charakteristische Polarisationsmuster geben sollte. Das stützt die Vorhersage der Inflation.

Die Hintergrundstrahlung ist Licht, das vor 13,8 Milliarden Jahren abgestrahlt wurde. Damals wurde das Universum erstmals durchsichtig. Diese frühen Wirbelmuster werden als B-Modus-Polarisationen bezeichnet. Sie können direkt auf Druck- und Dehnungseffekte zurückgeführt werden. Diese Effekte üben Gravitationswellen auf Elektronen aus, die Photonen abstrahlen.

Die überraschenden Ergebnisse fand man in Daten des Mikrowellen-Observatoriums Background Imaging of Cosmic Extragalactic Polarization 2 (BICEP2). Das Observatorium steht nahe beim Südpol. BICEP2 ist die Schüsselantenne auf dem Gebäude.

Der Bildeinschub zeigt eine Mikrowellen-Himmelskarte. Die schwarzen Polarisationsvektoren wirbeln scheinbar um die farbigen Temperaturspitzen. Die Schlussfolgerungen sind zwar statistisch schlüssig. Doch sie bleiben umstritten, solange man in unabhängigen Beobachtungen nach einer Bestätigung sucht.

Zur Originalseite

Die Größe des Universums – interaktiv

Link zur Animation: htwins.net/scale2

Credit und Rechte der Flash-Animation: Cary und Michael Huang

Wie sieht das Universum im kleinen Maßstab aus? Oder im großen? Das Universum sieht in jeder Größenordnung, welche die Menschheit erkundet hat, ganz anders aus. Zum Beispiel ist – unserer Kenntnis nach – jedes winzige Proton genau gleich. Doch jede riesige Galaxie sieht anders aus.

Betrachten wir vertrautere Größenordnungen. Die Oberfläche eines kleinen Glastisches ist für eine Staubmilbe eine gewaltige, seltsam glatte Ebene, manchmal von Zellbrocken übersät. Nicht alle Längenmaßstäbe sind gut untersucht. Zum Beispiel wird erforscht, was mit den winzigen Tröpfchen beim Niesen geschieht. Das Ergebnis hilft vielleicht, die Ausbreitung von Krankheiten einzudämmen.

Diese interaktive Fash-Animation ist eine moderne Version des klassischen Videos Zehn hoch. Es zeigt einen neuen Blick auf viele bekannte Größenordnungen im Universum. Wenn ihr den Scrollbalken am unteren Rand verschiebt, seht ihr eine Vielfalt an Größenordnungen. Ein Klick auf ein einzelnes Objekt zeigt seine Beschreibung.

Zur Originalseite