Der Supernovaüberrest Simeis 147

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Daniel López (El Cielo de Canarias) / IAC

Beschreibung: Man verläuft sich leicht, wenn man auf diesem detailreichen Bild den verworrenen Fasern des blassen Supernovaüberrestes Simeis 147 folgt. Er ist auch als Sharpless 2-240 katalogisiert und hat den gängigen Kosenamen Spaghettinebel. Er liegt an den Grenzen der Sternbilder Stier und Fuhrmann und bedeckt am Himmel fast 3 Grad oder 6 Vollmonde. Das sind etwa 150 Lichtjahre in der geschätzten Entfernung der Sterntrümmerwolke, diese beträgt ungefähr 3000 Lichtjahre. Dieses Kompositbild enthält Bilddaten, die mit Schmalbandfiltern fotografiert wurden, um die rötlichen Emissionen ionisierter Wasserstoffatome zu verstärken, welche das komprimierte leuchtende Gas aufzuzeigen. Der Supernovaüberrest ist ungefähr 40.000 Jahre alt, somit erreichte das Licht der massereichen Sternexplosion die Erde erstmals vor 40.000 Jahren. Doch der expandierende Überrest ist nicht die einzige Nachwirkung. Die kosmische Katastrophe hinterließ auch einen rotierenden Neutronenstern oder Pulsar, dieser ist alles, was vom ursprünglichen Sternkern blieb.

Zur Originalseite

Sharpless 249 und der Quallennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Eric Coles

Beschreibung: Der normalerweise blasse, schwer fassbare Quallennebel wurde auf diesem faszinierenden Teleskopmosaik festgehalten. Die Szene wird unten vom Stern Eta Geminorum am Fuß der himmlischen Zwillinge verankert, der Quallennebel ist der hellere gewölbte Emissionsnebel mit Tentakeln, die unter der Mitte nach links baumeln.

Die kosmische Qualle ist Teil des blasenförmigen Supernovaüberrestes IC 443, die expandierende Trümmerwolke eines explodierten massereichen Sterns. Das Licht der Explosion erreichte den Planeten Erde erstmals vor 30.000 Jahren. Wie sein Cousin in astrophysikalischen Gewässern – der Krebsnebelsupernovaüberrest – enthält auch der Quallennebel bekanntlich einen Neutronenstern, das ist der Überrest eines kollabierten Sternkerns. Ein Emissionsnebel, der als Sharpless 249 katalogisiert ist, füllt das Feld rechts oben.

Der Quallennebel ist ungefähr 5000 Lichtjahre entfernt. In dieser Distanz wäre dieses Schmalband-Kompositbild, das in Farben der Hubblepalette präsentiert wird, etwa 300 Lichtjahre breit.

Ö1-Nachtquartier:Das Jahr in den Sternen“ mit Maria Pflug-Hofmayr
Zur Originalseite

NGC 2736 – der Bleistiftnebel

Vor einem rötlichen Nebel mit einem Teppich aus Sternen leuchtet ein blauer, strichförmiger Nebel, von dem nach oben Fasern auslaufen. Auch im Hintergrund sind einige Fasern erkennbar.

Bildcredit und Bildrechte: Howard Hedlund und Dave Jurasevich, Las Campanas Obs.

Beschreibung: Die dünnen, hellen, geflochtenen Fasern, die sich zur Mitte dieses scharfen, detailreichen Farbkomposits bewegen, sind eigentlich lange Wellen in einem kosmischen Schleier aus leuchtendem Gas, der fast genau von der Seite sichtbar ist. Die Stoßwelle pflügt mit mehr als 500.000 Kilometern pro Stunde durch interstellaren Raum. Er ist als NGC 2736 katalogisiert, und seine längliche Erscheinung führte zu seinem volkstümlichen Namen: Bleistiftnebel. Der etwa 5 Lichtjahre lange und 800 Lichtjahre entfernte Bleistiftnebel ist jedoch nur ein kleiner Teil des Vela-Supernovaüberrestes. Der Vela-Überrest mit einem Durchmesser von ungefähr 100 Lichtjahren ist die expandierende Trümmerwolke eines Sterns, dessen Explosion vor zirka 11.000 Jahren zu beobachten war. Ursprünglich pflanzte sich die Stoßwelle mit Millionen Kilometern pro Stunde fort, wurde aber beträchtlich langsamer und fegte die umgebende interstellare Materie auf. Auf dem Schmalband-Weitwinkelbild zeigen rote und blau-grüne Farben das charakteristische Leuchten ionisierter Wasserstoff– und Sauerstoffatome.

Zur Originalseite

Supernovarest Simeis 147, der Spaghettinebel

In einem dicht besiedelten Sternenfeld mit wenigen hellen Sternen leuchtet ein verworrenes Knäuel aus roten Strähnen, die von dunkleren roten Nebeln umgeben ist.

Bildcredit und Bildrechte: Giuseppe Donatiello (Italien) und Tim Stone (USA)

Beschreibung: Man verliert leicht den Faden, wenn man den komplexen Strähnen des Spaghettinebels folgt. Die leuchtenden Fasern des Supernovaüberrestes, der als Simeis 147 und Sh2-240 katalogisiert ist, bedecken am Himmel fast drei Grad, das entspricht der Breite von 6 Vollmonden. Die Sternenschuttwolke ist etwa 3000 Lichtjahre entfernt, in dieser Distanz entspricht das einer Breite von ungefähr 150 Lichtjahren.

Dieses scharfe Komposit entstand aus Bilddaten, die mit Schmalbandfiltern fotografiert wurden, um die Emission der Wasserstoffatome zu betonen, die das komprimierte leuchtende Gas säumen. Der Supernovaüberrest ist zirka 40.000 Jahre alt, das bedeutet, dass das Licht der massereichen Sternexplosion erstmals vor 40.000 Jahren die Erde erreichte. Doch der expandierende Überrest ist nicht das einzige Nachleuchten. Die kosmische Katastrophe hinterließ auch einen rotierenden Neutronenstern oder Pulsar, er ist alles, was vom ursprünglichen Stern übrig blieb.

Zur Originalseite

M1: Der Krebsnebel

Mitten im Bild ist ein wolkiges Knäul mit vielen roten und blauen Fasern. Darum herum sind wenige schwach leuchtende Sterne verteilt.

Bildcredit und Bildrechte: Martin Pugh

Beschreibung: Der Krebsnebel ist als M1 katalogisiert und somit das erste Objekt auf Charles Messiers berühmter Liste aus dem 18. Jahrhundert von Dingen, die kein Komet sind. Wir wissen inzwischen, dass der Krebs aus den Trümmern eines Supernovaüberrestes besteht, entstanden nach finalen Explosion eines massereichen Sterns, die von Astronomen im Jahr 1054 beobachtet wurde. Diese scharfe, erdgebundene Teleskopansicht entstand aus Schmalbanddaten, welche die Emissionen ionisierter Sauerstoff- und Wasserstoffatome in Blau und Rot aufzuzeichnen, um die verschlungenen Fasern in der immer noch expandierenden Wolke zu erforschen. Der Krebs-Pulsar, ein Neutronenstern, der 30 Mal pro Sekunde rotiert, ist eines der exotischsten Objekte, die zeitgenössische Astronomen kennen, und ist als heller Fleck nahe der Mitte des Nebels zu sehen. Wie ein kosmischer Dynamo liefert der kollabierte Überrest des Sternkerns die Energie für die Emissionen der Krabbe im gesamten elektromagnetischen Spektrum. Der Krebsnebel ist zirka 12 Lichtjahre groß und steht ungefähr 6500 Lichtjahre entfernt im Sternbild Stier.

Zur Originalseite

Am westlichen Schleier

Im querformatigen Bild sind wild strukturierte Nebelfetzen verteilt. Sie leuchten blau und rot, was ihrer Zusammensetzung entspricht (Wasserstoff und Sauerstoff). Im Bild sind der Hexenbesen und Pickerings Dreieck zu sehen.

Bildbearbeitung: Oliver CzernetzDaten: Digitized Sky Survey (POSS-II)

Diese zarten Fasern aus komprimiertem leuchtendem Gas sind im Sternbild Schwan (Cygnus) drapiert. Sie bilden den westlichen Teil des Schleiernebels. Der Schleiernebel ist ein großer Supernovaüberrest. Das ist eine sich ausdehnende Wolke, die bei der finalen Explosion eines massereichen Sterns entstand.

Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde wahrscheinlich vor mehr als 5000 Jahren. Bei dem heftigen Ereignis entstand eine interstellare Stoßwelle. Sie pflügt durch den Weltraum. Dabei fegt die Stoßwelle interstellare Materie auf und bringt sie zum Leuchten. Die glimmenden Fasern sind eigentlich lange Wellen in einer Hülle, die wir von der Seite sehen. Die Hüllen sind in atomaren Wasserstoff (rot) und Sauerstoff (blaugrün) getrennt.

Der Schleiernebel ist auch als Cygnus-Schleife bekannt. Er ist fast 3 Grad oder 6 Vollmonddurchmesser breit. Das entspricht in der geschätzten Entfernung von 1500 Lichtjahren mehr als 70 Lichtjahren. Das breite Bild zeigt die westliche Hälfte des Schleiernebels. Hellere Teile im Schleier gelten als eigene Nebel. Dazu gehören der Hexenbesen (NGC 6960) oben und Pickerings Dreieck (NGC 6979) rechts unten. Anm.: Es ist auch als Williamina Flemings dreieckiges Büschel bekannt.

Zur Originalseite

Der lange Strahl des Leuchtturm-Nebels

Der Leuchtturmnebel ist im Bild rechts unten abgebildet, der Supernovaüberrest, von dem er ausgeschleudert wurde, leuchtet links oben. Alle Nebel im Bild sind violett abgebildet.

Röntgen-Bildcredit: NASA / CXC / ISDC / L. Pavan et al.

Der Leuchtturm-Nebel entstand durch den Wind eines Pulsars. Das ist ein schnell rotierender, magnetischer Neutronenstern. Dieser Pulsar rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde durchs interstellare Medium. Pulsar und Windnebel sind als IGR J11014−6103 katalogisiert. Sie sind etwa 23.000 Lichtjahre von uns entfernt und befinden sich im südlichen Sternbild Carina. Dieses Bild des Röntgenobservatoriums Chandra zeigt die beiden rechts unten.

Der Wind fegt geladene Teilchen, die der Pulsar erzeugte, in einen kometenartigen Schweif, der nach links oben zieht. Es verläuft die Gegenrichtung der Bewegung des Pulsars, der sich vom Supernovarest seiner Herkunft fortbewegt. Sowohl der ausreißende Pulsar als auch das sich ausdehnende Geröllfeld vom Supernovaüberrest entstanden durch die Explosion eines massereichen Sterns nach dem Kern-Kollaps. Bei der Supernova-Explosion wurde der Pulsar hinausgeschleudert.

Zur Szenerie kosmischer Extreme gehört auch ein langer, gewundener Strahl. Er ist fast 37 Lichtjahre lang und steht in einem fast rechten Winkel zur Bewegung des Pulsars. Der energiereiche Teilchenstrahl ist der längste, der je bei einem Objekt in unserer Galaxis beobachtet wurde.

Zur Originalseite

Das Zentrum von Auriga

Leuchtend rote Nebel und blaue Sternhaufen an der Grenze der Sternbilder Stier und Fuhrmann sind hier abgebildet: Simeis 147, IC 410, M36, M38 und NGC 1893.

Bildcredit und Bildrechte: Rogelio Bernal Andreo (Deep Sky Colors)

Das antike Sternbild Fuhrmann (Auriga) ist reich an Sternhaufen und Nebeln. Es reitet hoch am nördlichen Winternachthimmel. Diese detailreiche Mosaik-Teleskopansicht wurde im Jänner fotografiert. Am Himmel ist sie fast 24 Vollmonde (12 Grad) breit. Sie zeigt einige Ansichten im Fuhrmann, die bei kosmischen Touristen sehr beliebt sind. Das dicht gedrängte Feld reicht über die Ebene der Milchstraße in die Richtung gegenüber dem Zentrum der Galaxis.

Möchtet ihr eine Wegbeschreibung? Der helle, bläuliche Stern Elnath am unteren Bildrand liegt an der Grenze zwischen Fuhrmann und Taurus, dem Stier. Er ist sowohl als Beta Tauri als auch Gamma Aurigae bekannt. Links bedecken die verschlungenen Fasern des Supernovarestes Simeis 147 etwa 150 Lichtjahre. Simeis 147 ist fast 300 Lichtjahre entfernt. Rechts findet ihr den Emissionsnebel IC 410. Er ist wesentlich weiter entfernt, nämlich ungefähr 12.000 Lichtjahre.

In IC 410 entstehen Sterne. Der junge Sternhaufen NGC 1893 ist darin eingebettet. Bekannt sind auch kaulquappenförmige Wolken aus Staub und Gas. Der Flammensternnebel IC 405 ist nur ein wenig weiter entfernt. Seine roten, verschlungenen Wolken aus leuchtendem Wasserstoff werden vom heißen O-Stern AE Aurigae angeregt. Zwei offene Sternhaufen, M36 und M38 nach Charles Messier, sind oben im Sternfeld aufgereiht. Sie werden oft mit Fernglas betrachtet.

Zur Originalseite