Sharpless 249 und der Quallennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Daten: Steve Milne und Barry Wilson, Bearbeitung: Steve Milne

Beschreibung: Dieses faszinierende Teleskopsichtfeld zeigt den blassen, schwer fassbaren Quallennebel. Die Szenerie ist ein Mosaik aus zwei Bildfeldern, sie wurde aus Schmalband-Bilddaten konstruiert, bei denen die Emissionen von Schwefel-, Wasserstoff- und Sauerstoffatomen in roten, grünen und blauen Farbtönen abgebildet sind.

Links und rechts ist das Bild an den hellen Sternen Mu und Eta Geminorum am Fuß der himmlischen Zwillinge verankert. Der Quallennebel selbst liegt rechts neben der Mitte, er ist der etwas hellere gewölbte Emissionsgrat mit baumelnden Tentakeln. Eigentlich ist die kosmische Qualle Teil des blasenförmigen Supernovaüberrestes IC 443, dieser ist die expandierende Trümmerwolke eines massereichen Sterns, der explodierte. Das Licht der Explosion erreichte den Planeten Erde erstmals vor mehr als 30.000 Jahren.

Wie sein Cousin in astrophysikalischen Gewässern, der Krebsnebel-Supernovaüberrest, enthält auch der Quallennebel einen Neutronenstern, das ist der Überrest des kollabierten Sternkerns. Ein Emissionsnebel, der als Sharpless 249 katalogisiert ist, füllt das linke obere Feld. Der Quallennebel ist ungefähr 5000 Lichtjahre entfernt. In dieser Entfernung umfasst das Bild etwa 300 Lichtjahre.

Zur Originalseite

Tychos Supernovaüberrest in Röntgenlicht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA / CXC / F.J. Lu (Chinese Academy of Sciences) et al.

Beschreibung: Welcher Stern erzeugte diesen riesigen Bovisten? Hier ist der heiße, expandierende Nebel von Tychos Supernovaüberrest abgebildet. Er ist das Ergebnis einer Sternexplosion, die vor mehr als 400 Jahren von dem berühmten Astronomen Tycho Brahe beschrieben wurde. Dieses Bild ist ein Komposit in drei Röntgen-Spektralfarben, die mit dem Röntgenobservatorium Chandra im Orbit aufgenommen wurden.

Die expandierende Gaswolke ist extrem heiß, und die leicht unterschiedlichen Ausdehnungsraten verleihen der Wolke eine bauschige Erscheinung. Der Stern, der die Supernova SN 1572 erzeugte, wurde wahrscheinlich gänzlich aufgelöst, doch ein Stern mit dem Spitznamen Tycho G, der zu blass ist, um ihn hier zu erkennen, war vermutlich sein Begleiter. Überreste des Vorläufers von Tychos Supernova zu finden ist wichtig, da es eine Supernova vom Typ Ia war. Diese sind eine wichtige Sprosse der Entfernungsleiter, welche die Größenordnung des sichtbaren Universums kalibriert. Der Helligkeitshöhepunkt von Typ-Ia-Supernovae gilt als gut erforscht, weshalb sie bei der Erforschung des Zusammenhangs zwischen Blässe und Entfernung im fernen Universum ziemlich wertvoll sind.

Zur Originalseite

Mosaik des Vela-Supernovaüberrestes

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Robert Gendler, Roberto Colombari, Digitized Sky Survey (POSS II)

Beschreibung: Die Ebene unserer Milchstraße läuft durch diese komplexe, schöne Himmelslandschaft. Das 16 Grad breite Mosaik aus 200 Bildern zeigt die farbenprächtigen Sterne am nordwestlichen Rand des Sternbildes Segel (Vela). In der Bildmitte liegen die leuchtenden Fasern des Vela-Supernovaüberrestes, einer expandierenden Trümmerwolke von der Todesexplosion eines massereichen Sterns.

Das Licht der Supernovaexplosion, die den Vela-Überrest erzeugte, erreichte die Erde vor etwa 11.000 Jahren. Die kosmische Katastrophe hinterließ neben den komprimierten Fasern aus leuchtendem Gas auch einen unglaublich dichten, rotierenden Sternkern, den Vela-Pulsar. Der Vela-Überrest ist etwa 800 Lichtjahre entfernt und eingebettet in einen wahrscheinlich größeren, älteren Supernovaüberrest, den Gum-Nebel. Zu den erkennbaren Objekten auf diesem breiten Mosaik zählen Emissions- und Reflexionsnebel, Sternhaufen sowie der markante Bleistiftnebel.

Zur Originalseite

Cygnus Hülle Supernovaüberrest W63

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: J-P Metsavainio (Astro Anarchy)

Beschreibung: Der Geist eines längst toten Sterns, der Supernovaüberrest W63, leuchtet wie ein blasser kosmischer Rauchring in der Ebene der Milchstraße im nördlichen Sternbild Schwan (Cygnus). Seine gespenstische Erscheinung ist vor dem reichen Komplex aus interstellaren Wolken und Staub in der Region von einem schaurigen blauen Leuchten umrissen.

Das schöne Bild umfasst am Himmel mehr als vier Vollmonde, es ist ein Teleskopmosaik aus zwölf Bildfeldern, die 100 Stunden Belichtungszeit mit Schmalbandfiltern kombinieren. Es zeigt das charakteristische Licht ionisierter Schwefel-, Wassrstoff- und Sauerstoffatome in roten, grünen und blauen Farbtönen. Der sichtbare Teil der immer noch expandierenden Hülle der Supernova ist mehr als 5000 Lichtjahre entfernt und um die 150 Lichtjahre groß. Bisher wurde keine Quelle mit den Überbleibseln des Originalsterns von W63 in Verbindung gebracht. Das Licht der Supernovaexplosion des Sterns hat die Erde vermutlich vor mehr als 15.000 Jahren erreicht.

Zur Originalseite

Der einsame Neutronenstern im Supernovaüberrest E0102-72.3

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: (NASA/CXC/ESO/F. Vogt et al.); Optisch: (ESO/VLT/MUSE und NASA/STScI)

Beschreibung: Warum sitzt dieser Neutronenstern nicht in der Mitte? Vor einiger Zeit wurde ein einsamer Neutronenstern in den Trümmern einer alten Supernovaexplosion entdeckt. Der „einsame Neutronenstern“, um den es geht, ist der blaue Punkt in der Mitte des roten Nebels links unten in E0102-72.3.

Auf diesem Bildkomposit ist Röntgenlicht, das vom Chandra-Observatorium der NASA fotografiert wurde, blau abgebildet, während optisches Licht, das mit dem Very Large Telescope der ESO in Chile und dem Weltraumteleskop Hubble der NASA im Orbit fotografiert wurde, rot und grün dargestellt wird.

Die versetzte Position dieses Neutronensterns ist unerwartet, da der dichte Stern vermutlich der Kern jenes Sterns ist, der als Supernova explodierte und den äußeren Nebel bildete. Es wäre möglich, dass der Neutronenstern in E0102 durch die Supernova selbst aus der Mitte des Nebels gestoßen wurde, doch dann wäre es seltsam, dass der kleinere rote Ring auf den Neutronenstern zentriert bleibt. Alternativ könnte der äußere Nebel durch ein anderes Szenario entstanden sein – vielleicht sogar unter Einfluss eins anderen Sterns. Künftige Beobachtungen der Nebel und des Neutronensterns werden das Rätsel wahrscheinlich lösen.

Zur Originalseite

M1: Der Krebsnebel von Hubble

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, ESA, Hubble, J. Hester, A. Loll (ASU)

Beschreibung: Dieses Chaos bleibt zurück, wenn ein Stern explodiert. Der Krebsnebel ist das Ergebnis einer Supernova, die 1054 n. Chr. zu sehen war, er ist voller rätselhafter Fasern. Die Fasern sind nicht nur ungeheuer komplex, sie scheinen auch weniger Masse zu besitzen, als bei der ursprünglichen Supernova ausgestoßen wurde, und eine höhere Geschwindigkeit, als man bei einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen und ist in drei Farben dargestellt, die nach wissenschaftlichen Kriterien gewählt wurden. Der Krebsnebel ist etwa 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar: ein Neutronenstern mit der Masse der Sonne, aber der Größe einer Kleinstadt. Der Krebspulsar rotiert etwa 30 Mal pro Sekunde.

Zur Originalseite

Am westlichen Schleier entlang

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte:  Daten – Steve Milne und Barry Wilson, BearbeitungSteve Milne

Beschreibung: Diese filigran wirkenden Fasern aus erschüttertem leuchtendem Gas sind am irdischen Himmel im Sternbild Schwan drapiert. Sie bilden den westlichen Teil des Schleiernebels. Der Schleiernebel ist ein großer Supernovaüberrest – eine sich ausdehnende Wolke, die bei der Todesexplosion eines massereichen Sterns entstand. Das Licht der ursprünglichen Supernovaexplosion erreichte die Erde wahrscheinlich vor mehr als 5000 Jahren.

Die interstellare Stoßwelle, die bei dem vernichtenden Ereignis hinaussprengte, pflügt durch den Weltraum, dabei fegt sie interstellare Materie auf und regt diese an. Die leuchtenden Fasern gleichen eher langen Wellen in einem Laken, das fast von der Seite sichtbar ist, das Material ist außergewöhnlich gut aufgeteilt in atomaren Wasserstoff (rot) und Sauerstoff (blaugrün).

Der Schleiernebel ist auch als Cygnusbogen bekannt und umfasst inzwischen fast drei Grad oder sechs Vollmonddurchmesser. Das sind in der geschätzten Entfernung von 1500 Lichtjahren mehr als 70 Lichtjahre. Dieses Teleskop-Mosaikbild aus zwei Bildern zeigt den westlichen Teil und umfasst etwa die Hälfte dieser Distanz. Hellere Teile des westlichen Schleiers werden als eigene Nebel wahrgenommen, darunter der Hexenbesennebel (NGC 6960), der sich auf dieser Ansicht oben befindet, sowie Pickerings Dreieck (NGC 6979) links unten.

Zur Originalseite

Der Bleistiftnebel in Rot und Blau

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: José Joaquín Perez

Beschreibung: Diese Stoßwelle pflügt mit mehr als 500.000 Kilometern pro Stunde durch den interstellaren Raum. Die dünnen, aufwärts gerichteten geflochtenen Fasern auf diesem scharfen, detailreichen Farbkomposit sind eigentlich lange Wellen in einer kosmischen Schicht aus leuchtendem Gas, die fast genau von der Seite sichtbar ist. Sie ist als NGC 2736 katalogisiert. Ihre längliche Erscheinung suggeriert die gängige Bezeichnung Bleistiftnebel.

Der Bleistiftnebel ist ungefähr 5 Lichtjahre lang und 800 Lichtjahre entfernt, ist aber nur ein kleiner Teil des Vela-Supernovaüberrestes. Der Vela-Überrest ist die ungefähr 100 Lichtjahre große expandierende Trümmerwolke eines Sterns, der vor etwa 11.000 Jahren explodierte. Ursprünglich bewegte sich die Stoßwelle mit Millionen Kilometern pro Stunde, wurde aber stark abgebremst und fegte das umgebende interstellare Material zusammen. Auf diesem Schmalband-Weitwinkelbild zeigen rote und blaue Farben das charakteristische Leuchten ionisierter Wasserstoff– und Sauerstoffatome.

Aktuelle Galerien: Start der Parker Solar Probe und Perseïden-Meteorstrom 2018

Zur Originalseite