NGC 1850: Nicht in der Milchstraße

Links neben diesem Doppelsternhaufen in der Großen Magellanschen Wolke sind die blauen Fasern von Supernovaüberresten zu sehen.

Bildcredit: NASA, ESA und P. Goudfrooij (STScI); Bearbeitung: M. H. Özsaraç (Türkische Astronomische Gesellschaft)

Dieses Bild des Sternhaufens NGC 1850 stammt vom Weltraumteleskop Hubble. In unserer Milchstraße gibt es nichts, was dieser Sternenkugel ähnlich ist. Das überrascht, denn auf den ersten Blick erinnert NGC 1850 von der Größe und Form her an einen der vielen urzeitlichen Kugelsternhaufen im Halo unserer Milchstraße.

Doch die Sterne in NGC 1850 sind allesamt zu jung, als dass dieser Sternhaufen ein bekanntes Gegenstück in der Milchstraße haben könnte. Außerdem ist NGC 1850 ein Doppelsternhaufen. Rechts neben der Mitte des großen Haufens seht ihr einen zweiten, kompakten Sternhaufen. Das Alter der Sterne im großen Haufen wird auf etwa 50 Millionen Jahre geschätzt. Die Sterne im kompakten Haufen sind noch jünger, sie sind ungefähr vier Millionen Jahre alt.

NGC 1850 ist an die 168.000 Lichtjahre entfernt und liegt am Rand der Großen Magellanschen Wolke. Die leuchtenden Gasfilamente in der linken Bildhälfte erinnern an Supernovaüberreste in unserer Galaxis. Sie sind Zeugen gewaltiger Sternexplosionen und ein Hinweis, dass es in dieser Region in jüngster Zeit kurzlebige, massereiche Sterne gab.

Zur Originalseite

M1: Der Krebsnebel von Hubble

Der Krebsnebel ist eine chaotische Wolke aus vielen Fasern, wie dieses Bild des Weltraumteleskops Hubble zeigt. Beschreibung im Text.

Bildcredit: NASA, ESA, Hubble, J. Hester, A. Loll (ASU)

So ein Chaos entsteht, wenn ein Stern explodiert. Der Krebsnebel ist das Ergebnis einer Supernova aus dem Jahr 1054 n. Chr. und voller rätselhafter Fasern. Die Fasern sind nicht nur ungeheuer komplex, sie besitzen anscheinend auch weniger Masse, als von der ursprünglichen Supernova ausgestoßen wurde, und sie haben eine höhere Geschwindigkeit, als man bei einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen. Es ist in drei Farben dargestellt, die nach wissenschaftlichen Gesichtspunkten gewählt wurden. Der Krebsnebel ist etwa 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar, das ist ein Neutronenstern mit der Masse der Sonne, der aber nur so groß wie eine Kleinstadt. Der Krebspulsar rotiert etwa 30-mal pro Sekunde.

Zur Originalseite

Supernova-Kanone stößt Pulsar J0002 aus

Die Illustration zeigt einen Supernova-Überrest mit einer Linie, die sich nach rechts unten erstreckt und die Spur eines Neutronensterns darstellt.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Kanadische Vermessung der galaktischen Ebene (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Was kann einen Neutronenstern wie eine Kanonenkugel hinausschießen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebeligen Überrest CTB 1 erzeugte, nicht nur einen massereichen Stern, sondern schleuderte außerdem den neu entstandenen Neutronensternkern – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7 Mal pro Sekunde. Er wurde mithilfe der zum Download angebotenen Software Einstein@Home entdeckt. Diese Software durchsucht die Daten des Gammastrahlenobservatoriums Fermi der NASA im Weltraum.

Der Pulsar PSR J0002+6216 (kurz J0002) rast mit mehr als 1000 km pro Sekunde durchs All. Er hat den Supernovaüberrest CTB 1 bereits hinter sich und ist sogar schnell genug, um die Galaxis zu verlassen. Auf diesem Bild ist die Spur des Pulsars gut erkennbar, sie führt vom Supernovaüberrest nach links unten.

Das Bild ist eine Kombination aus Radiobildern der Radioobservatorien VLA und DRAO sowie Archivdaten des Infrarot-Weltraumobservatoriums IRAS der NASA. Wir wissen, dass Supernovae wie Kanonen agieren können, und auch, dass sich Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das zustande bringen.

Zur Originalseite

Supernova-Überrest: Der Schleiernebel

Das Bild zeigt eine Kombination von Langzeitbelichtungen des Schleiernebels, den leuchtenden, gasförmigen Überresten einer einer Supernova, die vor etwa zehntausend Jahren stattfand.

Bildcredit und Bildrechte: Craig Stocks (Ferngesteuerte Observatorien in der Wüste von Utah)

Vor zehntausend Jahren, noch vor Beginn der Geschichtsschreibung, erschien plötzlich ein neues Licht am Nachthimmel, das nach ein paar Wochen wieder verblasste. Heute wissen wir, dass dieses Licht von einer Supernova – einem explodierenden Stern – stammte, und bezeichnen die sich ausdehnende Trümmerwolke – den Supernovaüberrest – als Schleiernebel.

Die detailreiche Weitwinkelansicht wurde mit Farbfiltern erstellt, die Licht von Schwefel (rot), Wasserstoff (grün) und Sauerstoff (blau) aufnehmen. Bei der Bearbeitung wurden die Sterne entfernt, sodass die eindrucksvollen leuchtenden Fasern des Schleiers besser zur Geltung kommen.

Der Schleiernebel ist auch als Cygnusbogen bekannt. Er hat eine ungefähr kreisförmige Form und bedeckt am Himmel im Sternbild Schwan (Cygnus) fast drei Grad. Berühmte Nebelabschnitte sind der Fledermausnebel, der Hexenbesennebel und Flemings dreieckiges Büschel. Der ganze Supernovaüberrest ist etwa 1400 Lichtjahre entfernt.

Zur Originalseite

RCW 86: Historischer Supernovaüberrest

Überrest der Supernova in der Nanmen-Sterngruppe - heute Alpha und Beta Centauri, von der chinesische Astronomen im Jahr 185 n. Chr. berichteten.

Bildcredit und Bildrechte: Martin Pugh

Im Jahr 185 n. Chr. berichteten chinesische Astronomen vom Erscheinen eines neuen Sterns in der Nanmen-Sterngruppe. Dieser Teil des Himmels entspricht auf aktuellen Sternkarten Alpha und Beta Centauri. Der neue Stern war monatelang sichtbar und ist vermutlich die früheste dokumentierte Supernova.

Dieses detailreiche Bild zeigt den Emissionsnebel RCW 86, bei dem es sich wohl um den Überrest dieser Sternexplosion handelt. Die Schmalbanddaten erfassen das Gas, das durch die immer noch expandierende Stoßwelle ionisiert wurde.

Bilder aus dem Weltraum zeigen einen Überfluss an dem Element Eisen und das Fehlen eines Neutronensterns oder Pulsars im Überrest. Das lässt vermuten, dass es sich um eine Supernova vom Typ Ia handelte. Anders als bei der Supernovaexplosion eines massereichen Sterns mit kollabierendem Kern ist eine Typ-Ia-Supernova die thermonukleare Detonation auf einem Weißen Zwergstern, der zuvor Materie von einem Begleiter in einem Doppelsternsystem angesammelt hat.

RCW 86 ist etwa 8000 Lichtjahre entfernt und ungefähr 100 Lichtjahre groß. Der Supernovaüberrest liegt nahe der Ebene unserer Milchstraße und ist am Himmel größer als der Vollmond, aber zu blass für das bloße Auge.

Zur Originalseite

Der Krebsnebel in vielen Wellenlängen

Der Krebsnebel Messier 1 im Sternbild Stier, abgebildet in vielen Wellenlängen des elektromagnetischen Spektrums.

Bildcredit: NASA, ESA, G. Dubner (IAFE, CONICET-Universität von Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; Hubble/STScI

Beschreibung: Der Krebsnebel ist als M1 katalogisiert, er ist das erste Objekt auf Charles Messiers berühmter Liste an Dingen, die keine Kometen sind. Heute wissen wir, dass der Krebsnebel ein Supernovaüberrest ist, also die sich ausdehnenden Trümmer von der finalen Explosion eines massereichen Sterns. Diese Explosion wurde 1054 n. Chr. auf dem Planeten Erde beobachtet.

Dieses beeindruckende neue Bild zeigt eine Ansicht der Krabbe aus dem 21. Jahrhundert, es stellt Bilddaten aus dem gesamten elektromagnetischen Spektrum in Wellenlängen des sichtbaren Lichts dar. Daten aus dem Weltraum von Chandra (Röntgen), XMM-Newton (Ultraviolett), Hubble (sichtbares Licht) und Spitzer (Infrarot) sind in violetten, blauen, grünen und gelben Farbtönen abgebildet. Radio-Daten des Very Large Array vom Boden sind rot eingefärbt.

Der Krebs-Pulsar ist eines der exotischsten Objekte, die Astronominnen und Astronomen heute kennen. Es der helle Punkt nahe der Bildmitte – ein Neutronenstern, der 30 Mal pro Sekunde rotiert. Wie ein kosmischer Dynamo sorgt dieser kollabierte Überrest des Sternkerns für die Emissionen des Krebsnebels im gesamten elektromagnetischen Spektrum.

Der Krebsnebel ist ungefähr 12 Lichtjahre groß und 6500 Lichtjahre entfernt, ihr seht ihn im Sternbild Stier.

Wien, Ladenkonzept Nähe Votivkirche: Kostenlose Kalender (leichte Mängel)

Zur Originalseite

Supernovaüberrest Simeis 147

Der Supernovaüberrest Simeis 147 an der Grenze zwischen den Sternbildern Stier und Fuhrmann.

Bildcredit und Bildrechte: Jason Dain

Beschreibung: Man verirrt sich leicht, wenn man auf diesem detailreichen Bild des Supernovaüberrests Simeis 147 den komplexen, verworrenen Fasern folgt. Der Nebel ist auch als Sharpless 2-240 katalogisiert und trägt den gängigen Namen Spaghettinebel. Er liegt an der Grenze zwischen den Sternbildern Stier und Fuhrmann und bedeckt am Himmel fast 3 Grad oder 6 Vollmonde. In der geschätzten Entfernung der stellaren Trümmerwolke von 3000 Lichtjahren ist der Nebel somit etwa 150 Lichtjahre groß.

Dieses Kompositbild wurde mit Schmalbandfiltern aufgenommen. Rötliche Emissionen ionisierter Wasserstoffatome und doppelt ionisierte Sauerstoffatome in blassen blaugrünen Farbtönen zeichnen das erschütterte leuchtende Gas nach. Der Supernovaüberrest ist schätzungsweise 40.000 Jahre alt, somit erreichte das Licht der gewaltigen Sternexplosion erstmals vor 40.000 Jahren die Erde.

Doch der expandierende Überrest ist nicht alles, was übrig blieb. Bei der kosmischen Katastrophe entstand auch ein rotierender Neutronenstern oder Pulsar, der als Einziges vom Kern des ursprünglichen Sterns erhalten blieb.

Zur Originalseite

M1: Der Krebsnebel

Der Krebsnebel M1 im Sternbild Stier ist das erste Objekt auf Charles Messiers Kein-Komet-Liste.

Bildcredit und Bildrechte: Michael Sherick

Beschreibung: Der Krebsnebel ist als M1 katalogisiert, er ist das erste Objekt auf Charles Messiers berühmter Liste aus dem 18. Jahrhundert von Dingen, die keine Kometen sind. Heute wissen wir, dass die Krabbe ein Supernovaüberrest ist, sie besteht aus den Trümmern der finalen Explosion eines massereichen Sterns, die im Jahr 1054 von Himmelskundigen beobachtet wurde.

Diese scharfe, bodengebundene Teleskopansicht kombiniert Breitband-Farbdaten mit Schmalbanddaten, welche die Emissionen von ionisierten Schwefel-, Wasserstoff- und Sauerstoffatomen zeigen, um die verworrenen Fasern in der immer noch expandierenden Wolke zu erkunden.

Der Krebs-Pulsar ist ein Neutronenstern, der 30 Mal pro Sekunde um seine Achse rotiert. Er ist eines der exotischsten Objekte, die moderne Himmelsforschende kennen, ihr seht ihn als hellen Fleck nahe der Nebelmitte. Dieser kollabierte Überrest des Sternkerns rotiert wie ein kosmischer Dynamo und liefert die Energie für die Emissionen der Krabbe im gesamten elektromagnetischen Spektrum. Der Krabbennebel ist etwa 12 Lichtjahre groß und liegt an die 6500 Lichtjahre entfernt im Sternbild Stier.

Zur Originalseite