Simeis 147: Supernovaüberrest

Das Bild zeigt den rot leuchtenden Supernovaüberrest Simeis 147, der wegen seiner Form, die scheinbar aus verschlungenen Fasern besteht, auch Spaghettinebel genannt wird.

Bildcredit und Bildrechte: Rogelio Bernal Andreo (Deep Sky Colors)

Man verliert leicht die Orientierung, wenn man den verschlungenen Fasern folgt. Das detailreiche Mosaikbild zeigt den blassen Supernovaüberrest Simeis 147 (S147). Er ist auch als Sh2-240 katalogisiert und bedeckt am Himmel fast 3 Grad, das ist so breit wie 6 Vollmonde.

Die stellare Trümmerwolke ist etwa 3000 Lichtjahre entfernt. In dieser Distanz ist sie etwa 150 Lichtjahre breit. Der helle Stern Elnath oder auch Beta Tauri verankert das Bild rechts. Er liegt an der Grenze zwischen den Sternbildern Stier (Taurus) und Fuhrmann (Auriga). Am Himmel der Erde befindet er sich fast exakt gegenüber dem galaktischen Zentrum.

Dieses scharfe Kompositbild entstand aus Bilddaten, die mit einem Schmalbandfilter fotografiert wurden. So können die Emissionen von Wasserstoffatomen gezeigt werden, die das erschütterte leuchtende Gas markieren.

Das Licht der massereichen Sternexplosion erreichte die Erde vor etwa 40.000 Jahren. Doch der sich ausdehnende Überrest ist nicht die einzige Hinterlassenschaft. Die kosmische Katastrophe ließ auch einen rotierenden Neutronenstern oder Pulsar zurück. Er ist alles, was vom Kern des ursprünglichen Sterns übrig bleibt.

Zur Originalseite

NGC 2736: Der Bleistiftnebel

Zwischen vielen kleinen und einigen großen gezackten Sternen leuchtet der Bleistiftnebel mit einem rötlichen Gasbüschel, das ein wenig an einen Hexenbesen erinnert.

Bildcredit: ESO

Diese Stoßwelle pflügt mit mehr als 500.000 Kilometern pro Stunde durch den Raum. Die dünnen, geflochtenen Fasern bewegen sich zum unteren Rand des detailreichen Farbkompositbildes. Sie sind eigentlich lange Wellen in einer Schicht aus leuchtendem Gas. Die Schicht ist fast genau von der Seite zu sehen.

Das Objekt ist als NGC 2736 katalogisiert. Seine schmale Erscheinung führte zum landläufigen Namen Bleistiftnebel. Der Bleistiftnebel ist etwa 5 Lichtjahre lang und an die 800 Lichtjahre entfernt. Er ist ein kleiner Teil des Vela-Supernovaüberrestes. Dieser Überrest hat einen Durchmesser von insgesamt 100 Lichtjahren.

Der Vela-Supernovaüberrest ist die Trümmerwolke eines Sterns, die sich ausdehnt. Die Explosion war vor etwa 11.000 Jahren zu sehen. Anfangs bewegte sich die Stoßwelle mit einer Million Kilometer pro Stunde. Inzwischen bremste sie beträchtlich ab und fegt das interstellare Gas in ihrer Umgebung zusammen.

Zur Originalseite

Im Glanz Alpha von Centauri

Links strahlt Alpha Centauri, der hellste Stern im Sternbild Zentaur. Daneben sind einige oft übersehene Objekte: der planetarische Nebel Hen 2-111 und zwei offene Sternhaufen, Pismis 19 und NGC 5617.

Bildcredit und Bildrechte: Marco Lorenzi (Glittering Lights)

Alpha Centauri ist einer der hellsten Sterne am Nachthimmel des Planeten Erde. Sein Glanz flutet die linke Seite dieser südlichen Himmelslandschaft. Alpha Centauri ist etwa 4,3 Lichtjahre entfernt. Er besteht eigentlich aus zwei Sternkomponenten, beide sind ähnlich groß wie die Sonne. Sie kreisen in einem gemeinsamen Orbit. Ein viel kleineres, kühleres drittes Mitglied des Sternsystems ist Proxima Centauri. Dieser Stern ist außerhalb des Sichtfeldes.

Die Teleskopansicht zeigt Stammgäste in der dicht gedrängten galaktischen Ebene der Milchstraße, die oft nicht beachtet werden. Sie liegen außerhalb von Alpha Centauris Glanz. Einer ist der planetarische Nebel Hen 2-111. Er ist ungefähr 7800 Lichtjahre entfernt. Rechts neben der Bildmitte sind die gasförmigen Hüllen eines vergehenden Sterns. Der hellere Kern und der zartere Hof des Nebels bestehen aus rötlichem, ionisiertem Gas. Sie sind mehr als zwanzig Lichtjahre breit.

Weiter rechts befinden sich zwei markante offene Sternhaufen. Einer ist der kompakte Pismis 19, der ebenfalls fast 8000 Lichtjahre entfernt ist. Sein Licht wird vom Staub in der Umgebung gerötet. Der andere ist der losere, näher gelegene Haufen NGC 5617.

Im Glanz von Alpha Centauri ist das schwache Leuchten eines schalenförmigen Supernovaüberrestes gerade noch zu sehen. Es befindet sich rechts über dem hellen Schein des uns am nächsten liegenden Sternsystems.

Zur Originalseite

Aufgeheizt durch die Supernova 1987A

Ein orangefarbener Kern ist von einem hellgelb leuchtenden Ring umgeben, der aus einzelnen Lichtpunkten besteht. Das Bild ist ein animiertes gif, das die Entwicklung im Lauf der Jahre zeigt.

Bildcredit: Weltraumteleskop Hubble, NASA, ESA; Videobearbeitung: Mark McDonald

Vor 25 Jahren wurde die hellste Supernova der Gegenwart entdeckt. Astronomen beobachteten sie im Lauf der Jahre. Während sich die Überreste der gewaltigen Sternexplosion ausbreiteten, prallen sie gegen früher ausgestoßene Materie.

Dieses Zeitraffervideo zeigt das eindeutige Ergebnis der Kollision. Es entstand aus Bildern, die zwischen 1994 und 2009 mit dem Weltraumteleskop Hubble aufgenommen wurden. Das animierte GIF zeigt die Kollision der Explosionswelle mit dem schon zuvor bestehenden Ring, die die sich nach außen bewegt. Der Ring ist ein Lichtjahr groß.

Die Kollision findet mit Geschwindigkeiten von fast 60 Millionen Kilometern pro Stunde statt. Sie heizte das Material des Rings so plötzlich auf, dass es zu leuchten begann. Astronominnen untersuchen die Kollision weiterhin, da sie die interessante Vergangenheit von SN 1987A beleuchtet und Hinweise auf den Ursprung der rätselhaften Ringe liefert.

Galerie: Jupiter-Venus-Mond-Konjunktion
Zur Originalseite

Die rätselhaften Ringe der Supernova 1987A

Mitten im Bild leuchtet ein Ring aus lellen Lichtern. Von diesem gehen nach oben und unten dunkelrote Ringe aus, die eine 8 bilden und nur schwach leuchten. Darum verteilt leuchten Sterne in unserer Milchstraße.

Bildcredit: ESA/Hubble, NASA

Wie entstanden die eigenartigen Ringe um die Supernova 1987A? Vor 25 Jahren – 1987 – wurde in der Großen Magellanschen Wolke die hellste Supernova der jüngsten Vergangenheit entdeckt. Mitten im Bild leuchtet der Überrest der gewaltigen Sternexplosion. Im Zentrum ist ein Objekt. Um seine Mitte verlaufen eigenartige äußere Ringe wie eine abgeflachte 8er-Schleife. Dieses Hubble-Bild des Überrestes SN1987A stammt vom letzten Jahr.

Große Teleskope wie das Weltraumteleskop Hubble beobachten regelmäßig die merkwürdigen Ringe. Trotzdem bleibt ihr Ursprung ein Rätsel. Eine Ursache der Ringe könnte eine Wechselwirkung mit Strahlen sein, die von einem verborgenen Supernovaüberrest – einem Neutronenstern – ausströmen. Auch eine Wechselwirkung zwischen dem Sternwind des Vorgängersterns und dem Gas, das beider Explosion freigesetzt wurde, wird vermutet.

Zur Originalseite

Der Fall des fehlenden Supernovabegleiters

Der Nebel füllt fast das ganze Bild. Außen ist ein roter Ring, der an eine Seifenblase erinnert, innen sind einige grün schimmernde Nebelflecke. Das Bild ist voller weißer Sterne.

Bildcredit: Röntgenstrahlung: NASA/CXC/SAO/J. Hughes et al., sichtbares Licht: NASA/ESA/Hubble-Vermächtnisteam (STScI /AURA)

Wo ist der andere Stern? Mitten in diesem Supernovaüberrest sollte der Begleiter des explodierten Sterns sein. Diesen Stern zu entdecken ist wichtig, um zu verstehen, wie Typ-Ia-Supernovae explodieren. Das könnte zu einem besseren Verständnis führen, warum die Helligkeit so einer Explosion so vorhersagbar ist. Das ist wiederum der Schlüssel zur Kalibrierung der Entfernungen im gesamten Universum.

Die Schwierigkeit ist, dass auch bei sorgfältiger Untersuchung des Zentrums von SNR 0509-67.5 kein Stern entdeckt wurde. Das lässt vermuten, dass der Begleiter sehr schwach leuchtet – viel schwächer als viele der hellen Riesensterne, die frühere Kandidaten waren. Vermutlich ist der Begleitstern ein blasser weißer Zwerg, ähnlich wie der Stern, der explodierte, aber mit viel mehr Masse.

SNR 0509-67.5 ist oben im sichtbaren Licht und Röntgenlicht abgebildet. Die rot leuchtenden Teile wurden vom Weltraumteleskop Hubble fotografiert, Röntgenlicht wurde in Falschfarbengrün dargestellt und vom Röntgenobservatorium Chandra aufgenommen. Wenn ihr den Mauspfeil über das Bild schiebt, wird die Region markiert, wo sich der fehlende Begleitstern befinden müsste.

Zur Originalseite

M1: Der Krebsnebel, von Hubble fotografiert

Der ovale Nebel im Bild ist ein flackerndes Gewirr aus orange-gelben und grünen Fasern, in der Mitte schimmert ein blau-weißlicher Nebel.

Bildcredit: NASA, ESA, J. Hester, A. Loll (ASU); Dank an: Davide De Martin

Diese Unordnung bleibt übrig, wenn ein Stern explodiert. Der Krebsnebel ist das Resultat einer Supernova, die 1054 n. Chr. beobachtet wurde. Er ist voller rätselhafter Fasern. Diese Fasern sind nicht nur ungemein komplex, sondern haben anscheinend auch eine höhere Geschwindigkeit, als man bei einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen. Es wird in drei Farben dargestellt, die nach wissenschaftlichen Kriterien gewählt wurden. Der Krebsnebel ist etwa 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar, das ist ein Neutronenstern, er hat gleich viel Masse wie die Sonne, ist aber nur so groß wie eine kleine Stadt. Der Krebs-Pulsar rotiert etwa 30-mal pro Sekunde um seine Achse.

Zur Originalseite

Supernova-Sonate

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Titelbild: Keplers Supernovaüberrest: Chandra (Röntgenstrahlen) / Hubble (optisch) / Spitzer (IR); Credit: Alex H. Parker (Univ. Victoria), Melissa L. Graham (Univ. California, Santa Barbara / LCOGT)

Beschreibung: Für eine Sonate für Supernovae muss man erst einmal die Supernovae finden. Dafür nützten die Komponisten* Alex Parker und Melissa Graham Daten aus dem Durchmusterungs-Archiv des Canada France Hawaii Telescope (CFHT) von vier Himmelsausschnitten, die von April 2003 bis August 2006 detailreich fotografiert wurden, und wählten 241 Supernovae vom Typ Ia.

Für Kosmologen* sind diese thermonuklearen Explosionen, bei denen weiße Zwergsterne zerstört werden, sehr interessant. Jede Supernova spielt eine Note, deren Lautstärke durch die Entfernung der Supernova definiert wurde. Schwache, weit entfernte Supernovae spielen leise Noten.

Die Tonhöhe jeder Note basiert auf einem Dehnungsfaktor, der sich danach richtet, wie schnell die Supernova im Vergleich zu einer Standardzeitspanne heller wird und wieder verblasst. Je höher der Dehnungsfaktor, desto höher die Note auf der oben gezeigten phrygisch-dominanten Tonleiter.

Natürlich wird jede Supernova-Note von einem Instrument gespielt. Supernovae in massereichen Galaxien werden von einem Kontrabass vorgetragen, die Noten von Supernovae in massearmen Galaxien werden auf einem Konzertflügel gespielt.

Klickt auf das Bild oder folgt diesen Link (Vimeo, YouTube), dann seht ihr eine Zeitfaffer-Animation der CFHT-Legacy-Survey-Daten, während ihr die Supernova-Sonate hört.

Zur Originalseite