Der Krebsnebel in vielen Wellenlängen des Spektrums

Der Krebsnebel M1 im Sternbild Stier ist hier in ungewöhnlichen Farben dargestellt, weil Bilddaten in unsichtbaren Wellenlängen in sichtbaren Lichtfarben visualisiert wurden.

Bildcredit: NASA, ESA, G. Dubner (IAFE, CONICET-Universität von Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; Hubble/STScI

Der Krebsnebel ist als M1 katalogisiert. Somit ist er das erste Objekt auf Charles Messiers berühmter Liste von Dingen, die keine Kometen sind. Inzwischen kennt man den Krebs als Supernovaüberrest. Das sind die expandierenden Reste eines massereichen Sterns nach der finalen Explosion. Diese wurde 1054 n. Chr. auf dem Planeten Erde beobachtet.

Dieses stattliche neue Bild ist ein Blick des 21. Jahrhunderts auf den Krebsnebel. Es zeigt Bilddaten aus dem gesamten elektromagnetischen Spektrum als Wellenlängen in sichtbarem Licht. Die Daten der Weltraumteleskope Chandra (Röntgen), XMM-Newton (Ultraviolett), Hubble (sichtbar) und Spitzer (Infrarot) sind in violetten, blauen, grünen und gelben Farbtönen dargestellt. Die Radiodaten des Very Large Array (VLA) auf der Erde sind rot abgebildet.

Der Krebs-Pulsar ist der helle Punkt nahe der Bildmitte. Er gehört zu den exotischsten Objekten, die heutige Astronomieforschende kennen. Der Pulsar ist ein Neutronenstern, der 30-mal pro Sekunde rotiert. Dieser kollabierte Überrest des Sternkerns liefert die Energie für die Emissionen der Krabbe im gesamten elektromagnetischen Spektrum wie ein kosmischer Dynamo. Der Krebsnebel ist etwa 12 Lichtjahre groß und 6500 Lichtjahre entfernt. Er liegt im Sternbild Stier.

Zur Originalseite

Der Ausreißerstern Zeta Oph

Der Stern in der Mitte leuchtet blau und schiebt eine gebogene Staubfront nach links.

NASA, JPL-Caltech, Weltraumteleskop Spitzer

Der Ausreißerstern Zeta Ophiuchi schiebt eine gewölbte interstellare Bugwelle vor sich her, wie ein Schiff, das durch kosmische Meere pflügt. Sie ist auf diesem atemberaubenden Infrarotporträt zu sehen. Der bläuliche Stern Zeta Oph ist nahe der Bildmitte in Falschfarben dargestellt. Er hat etwa 20 Sonnenmassen und wandert mit 24 Kilometern pro Sekunde nach links. Sein starker Sternenwind eilt ihm voraus. Er komprimiert und erhitzt die staubige interstellare Materie und formt die gekrümmte Stoßfront.

Wie kam der Stern in Bewegung? Zeta Oph war wahrscheinlich Teil eines Doppelsternsystems mit einem massereicheren und daher kurzlebigeren Begleitstern. Als der Begleiter als Supernova explodierte und katastrophal an Masse verlor, wurde Zeta Oph aus dem System geschleudert. Zeta Oph ist etwa 460 Lichtjahre entfernt und 65.000 Mal lichtstärker als die Sonne. Er wäre einer der helleren Sterne am Himmel, wenn er nicht von Staub verdunkelt wäre. Das Bild ist 1,5 Grad breit. Das entspricht in der geschätzten Entfernung von Zeta Ophiuchi zirka 12 Lichtjahren.

Zur Originalseite

NGC 602 und dahinter

Der Sternhaufen NGC 602 ist von malerischen Staubwolken umgeben, die am Rand zu dichten Graten komprimiert wurden.

Bildcredit: Röntgen: Chandra: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Optisch: Hubble: NASA/STScI; Infrarot: Spitzer: NASA/JPL-Caltech

Die Kleine Magellansche Wolke ist eine Begleitgalaxie der Milchstraße. Sie ist etwa 200.000 Lichtjahre von uns entfernt. An ihrem Rand liegt der 5 Millionen Jahre junge Sternhaufen NGC 602. Das faszinierende Hubble-Bild zeigt NGC 602, der von dem Gas und Staub umgeben ist, in dem er entstand.

Bilder im Röntgenlicht von Chandra und in Infrarot von Spitzer ergänzen die Ansicht. Die fantastischen Grate und zurückgefegten Formen sind klare Hinweise, dass die energiereiche Strahlung und die Stoßwellen der massereichen jungen Sterne in NGC 602 die staubige Materie erodiert haben. Dabei lösten sie eine Serie an Sternbildung aus, die vom Zentrum des Sternhaufens ausgeht.

In der Distanz der Kleinen Magellanschen Wolke ist das Bild etwa 200 Lichtjahre breit. Doch die scharfe vielfarbige Ansicht zeigt auch eine reizende Auswahl an Galaxien, die dahinter liegen. Sie sind Hunderte Millionen Lichtjahre oder mehr von NGC 602 entfernt.

Zur Originalseite

Sieben Welten für TRAPPIST-1

Links oben glüht ein orangefarbener Stern, vor dem zwei Planeten liegen. Rechts unten sind 5 weitere Planeten verteilt. Der Stern ist von einem roten Schimmer umgeben.

Illustrationscredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer, Robert Hurt (Spitzer, Caltech)

Sieben Welten umkreisen den sehr kühlen Zwergstern TRAPPIST-1. Er ist etwa 40 Lichtjahre entfernt. Im Mai 2016 gaben Forschende die Entdeckung von drei Planeten bekannt. Sie wurden mit dem Transiting Planets and Planetesimals Small Telescope (TRAPPIST) im System TRAPPIST-1 entdeckt.

Kaum war das veröffentlicht, erhöhte sich die Zahl der bekannten Planeten auf sieben. Das wurde durch zusätzliche Bestätigungen und Entdeckungen mit dem Weltraumteleskop Spitzer möglich, unterstützt durch erdgebundenen Teleskope der ESO. Wahrscheinlich sind alle Planeten bei TRAPPIST-1 felsig und ähnlich groß wie die Erde. Sie sind der bisher größte Schatzfund terrestrischer Planeten bei einem einzigen Stern.

Die Planeten kreisen sehr eng um ihren blassen, winzigen Stern. Daher könnte es dort auch Regionen geben, in denen die Temperatur an der Oberfläche flüssiges Wasser erlaubt. Das wäre eine Schlüsselzutat für Leben. Ihre interessante Nähe zur Erde macht sie zu Spitzenkandidaten, wenn es darum geht, Teleskope auf die Atmosphären von Planeten zu richten, die möglicherweise bewohnbar sind.

Diese Illustration zeigt alle sieben Welten. Das Bild ist eine erdachte Ansicht durch ein fiktives mächtiges Teleskop in der Nähe des Planeten Erde. Die Größen der Planeten und ihre relativen Positionen zeigen die Maßstäbe der Beobachtungen mit Spitzer. Die inneren Planeten des Systems ziehen vor ihrem dämmrigen roten Heimatstern vorbei, der fast so groß ist wie Jupiter.

Zur Originalseite

Infraroter Trifid

Links leuchtet ein Nebel mit grünem breitem Wolkenrand und einem rot-gelben Inneren, im Hintergrund sind Sterneverteilt.

Bildcredit: J. Rho (SSC/Caltech), JPL-Caltech, NASA

Der Trifidnebel ist auch als Messier 20 bekannt. Man findet ihn leicht mit einem kleinen Teleskop. Er ist ein beliebtes Ziel im nebelreichen Sternbild Schütze. Auf Bildern in sichtbarem Licht ist der Nebel durch dunkle, undurchsichtige Staubbahnen dreigeteilt. Doch dieses Infrarotbild zeigt stattdessen Fasern aus leuchtenden Staubwolken und jungen Sternen.

Das tolle Falschfarbenbild stammt vom Weltraumteleskop Spitzer. Man verwendet die Bilddaten in Infrarot, um neue und neu entstehende Sterne zu zählen, die normalerweise in den Gas- und Staubwolken der faszinierenden Sternschmiede verborgen sind, wo sie entstehen.

Der Trifidnebel ist etwa 30 Lichtjahre groß und nur 5500 Lichtjahre entfernt.

Aktuell: Korrektur der Zeitrechnung

Zur Originalseite

NGC 6357: Wunderwelt mit Sternen

Der Nebel NGC 6357 enthält komplex verschlungene Fasern aus Staub und Gas. Daten von optischen Teleskopen sind blau dargestellt. Dazwischen verlaufen rote Nebelbänder in Orange. Einige Bereiche um die hellen Sterne schimmern purpurfarben.

Bildcredit: Röntgen: NASA/CXC/PSU/L. Townsley et al; Optisch: UKIRT; Infrarot: NASA/JPL-Caltech

Aus unerfindlichen Gründen entstehen NGC 6357 einige der massereichsten Sterne, die je entdeckt wurden. Das komplexe Wunderland der Sternbildung besteht aus zahlreichen Fasern aus Staub und Gas. Sie umgeben riesige Höhlen, in denen sich in denen sich Sternhaufen mit viel Masse befinden. Die verschlungenen Muster entstehen durch komplexe Wechselwirkungen. Diese finden zwischen interstellaren Winden, Strahlungsdruck, Magnetfeldern und Gravitation statt.

Dieses Bild entstand aus Aufnahmen, die im sichtbaren Licht (blau) mit dem Teleskop UKIRT auf Hawaii aufgenommen wurden. Das geschah im Rahmen der SuperCosmos-Durchmusterung des Himmels. Ergänzt wurden das Bild mit Infrarot-Daten des Spitzer-Teleskops der NASA (orange) und Röntgen-Daten des Röntgen-Teleskops Chandra (purpur).

Der Nebel NGC 6357 ist ungefähr 100 Lichtjahre groß. Er ist etwa 5500 Lichtjahre entfernt und liegt im Sternbild Skorpion. In 10 Millionen Jahren sind die meisten massereichen Sterne, die man derzeit in NGC 6357 sieht, sicherlich explodiert.

Zur Originalseite

Der Helixnebel in Infrarot

Mitten im dunklen Bild mit schwach leuchtenden Sternen leuchtet ein Nebel, der an ein Auge mit roter Iris erinnert.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer; Bearbeitung: Judy Schmidt

Warum leuchtet dieses kosmische Auge so rot? Wegen des Staubs. Das Bild stammt vom robotischen Weltraumteleskop Spitzer. Es zeigt den gut untersuchten Helixnebel (NGC 7293) in Infrarotlicht. Der Nebel ist etwa 700 Lichtjahre entfernt und liegt im Sternbild Wassermann. Er ist eine Hülle aus Staub und Gas um einen zentralen Weißen Zwerg. Sein Durchmesser beträgt zwei Lichtjahre.

Seit Langem gilt er als gutes Beispiel für einen planetarischen Nebel. Das ist das Endstadium in der Entwicklung eines sonnenähnlichen Sterns. Die Daten von Spitzer zeigen, dass der Zentralstern im Nebel von einem überraschend hellen Leuchten in Infrarot umgeben ist. Modelle zeigen, dass das infrarote Leuchten von einer Staub- und Trümmerwolke stammen könnte. Das nebelartige Material wurde vielleicht vor Tausenden Jahren vom Stern ausgestoßen.

Der nahe Staub entstand womöglich bei Kollisionen von Objekten, die sich in einem Speicher befinden, ähnlich wie der Kuipergürtel oder die Oortsche Wolke im Sonnensystem, aus der viele Kometen stammen. Die kometenähnlichen Körper bei einem möglichen fernen Planetensystem um den Zentralstern des Nebels hätten in diesem Fall sogar das dramatische Endstadium der Sternentwicklung überstanden.

Zur Originalseite

Cancri 55 e: Klimamuster auf einer Welt voller Lava

Illustrations-Credit: NASA, JPL-Caltech, Weltraumteleskop Spitzer, Robert Hurt (Spitzer, Caltech)

Warum sollte man die Supererde Cancri 55 e besuchen? Ihr extrem heißes Klima schreckt ab, denn der Morgen kann auf dieser Welt frische Ströme aus Lava bringen. Der Planet Cancri 55 e wurde 2004 entdeckt. Er ist doppelt so breit wie unsere Erde und besitzt etwa 10 Erdmassen.

Der Planet kreist um einen sonnenähnlichen Stern, der 40 Lichtjahre entfernt ist. Dabei kommt er dem Stern viel näher als Merkur der Sonne. Er kreist so nahe, dass er gebunden rotiert. Das bedeutet, dass immer dieselbe Seite zu dem Stern zeigt, um den er kreist – wie unser Mond auf seiner Bahn um die Erde.

Kürzlich maß man die Temperaturschwankungen auf diesem Exoplaneten. Das gelang mit Beobachtungen in Infrarot mit dem Weltraumteleskop Spitzer. Diese Messungen halfen einem Künstler, dieses Video zu erstellen. Es gibt eine begründete Vermutung, wie ein Umlauf von Cancri 55 e aussehen könnte. Man sieht die volle Phase, wo der Planet ganz beleuchtet ist, sowie die dunkle Phase, wenn der Planet vor dem Stern vorbeizieht. Die anschaulichen roten Bänder auf Cancri 55 e zeigen Lavaströme, die vielleicht auf dem Planeten fließen.

Eine aktuelle Bestimmung der Dichte von 55 Cancri e zeigt, dass dieser Exoplanet nicht vorwiegend aus Sauerstoff besteht, wie die inneren Planeten im Sonnensystem, sondern eher aus Kohlenstoff. Daher lohnt es sich vielleicht, Cancri 55 e zu besuchen und seinen Kern zu erforschen. Denn der große Druck im Inneren des Planeten reicht aus, um den Kohlenstoff, den man dort fand, in einen riesigen Diamanten zu verwandeln.

Zur Originalseite