M101 im 21. Jahrhundert

Die Feuerradgalaxie M101 füllt das Bild. Ihre Spiralarme sind auf dieser Aufnahme von hellrot leuchtenden Sternbildungsgebieten gesäumt, nach außen hin verlaufen sie blau, was offene Sternhaufen andeutet.

Bildcredit: NASA, ESA, CXC, JPL, Caltech STScI

Die große, schöne Spiralgalaxie M101 ist einer der letzten Einträge in Charles Messiers berühmtem Katalog. Doch sie ist nicht unbedeutend. Die Galaxie ist ungefähr gewaltige 170.000 Lichtjahre groß. Sie misst also fast doppelt so viel wie unsere Milchstraße. M101 war einer der Spiralnebel, die mit Lord Rosses großem Teleskop beobachtet wurden. Es war der Leviathan von Parsonstown aus dem 19. Jahrhundert.

Diese Ansicht des großen Inseluniversums entstand in mehreren Wellenlängen. Sie ist im Vergleich dazu ein Komposit aus Bildern, die im 21. Jahrhundert von Weltraumteleskopen aufgenommen wurden. Die Bilddaten sind farbcodiert, von Röntgenstrahlen bis Infrarotwellenlängen (hohe bis niedrige Energie). Sie stammen vom Röntgenobservatorium Chandra (violett), dem Galaxy Evolution Explorer (GALEX, blau) sowie den Weltraumteleskopen Hubble (gelb) und Spitzer (rot).

Die Röntgendaten zeigen Gas um explodierte Sterne, Neutronensterne und Doppelsternsysteme mit Schwarzen Löchern in M101. Dieses Gas ist viele Millionen Grad heiß. Die Daten mit niedriger Energie zeigen Sterne und Staub, aus denen die prächtigen Spiralarme von M101 bestehen.

M101 ist auch als Feuerradgalaxie bekannt. Sie liegt etwa 25 Millionen Lichtjahre entfernt im nördlichen Sternbild Große Bärin (Ursa Major).

(Hinweis der Herausgeber: Das ursprüngliche hier gezeigte Bild wurde am 25. Jänner zurückgezogen.)

Zur Originalseite

Infraroter Trifid

Links ist ein grün leuchtender runder Nebel, der wie eine Höhle wirkt und innen rot leuchtet. Er ist von lose verteilten Sternen umgeben.

Bildcredit: J. Rho (SSC/Caltech), JPL-Caltech, NASA

Beschreibung: Der Trifidnebel, auch bekannt als Messier 20, ist mit einem kleinen Teleskop leicht zu finden. Er ist ein bekanntes Ziel im nebelreichen Sternbild Schütze. Auf Bildern im sichtbaren Licht ist der Nebel durch dunkle, undurchsichtige Staubbahnen in drei Teilen gespalten. Dieses durchdringende Infrarotbild zeigt Fasern aus leuchtenden Staubwolken und neu entstandene Sterne.

Diese prachtvolle Falschfarbenansicht entstand mit dem Weltraumteleskop Spitzer. Astronomen nützten die Infrot-Bilddaten von Spitzer, um die jungen und die noch nicht voll entwickelten Sterne zu zählen, die normalerweise in den Geburtsstaub- und -gaswolken dieser faszinierenden Sternentstehungsregion verborgen sind. Trifid ist ungefähr 30 Lichtjahre groß und nur 5500 Lichtjahre entfernt.

Zur Originalseite

Gelbe Kugeln in W33

Das Bild von W33 wurde in Infrarot-Wellenlängen aufgenommen, diese wurden in Farben des sichtbaren Lichts gefärbt. Im Bild sind Objekte verteilt, die als gelbe Kugeln bezeichnet wurden.

Bildcredit: NASA/JPL-Caltech

Das Weltraumteleskop Spitzer beobachtete die Infrarot-Wellenlängen 3,6 Mikrometer, 8,0 und 24,0 Mikrometer. Im Bild sind sie als sichtbares Licht in Rot, Grün und Blau dargestellt. Die kosmische Wolke aus Gas und Staub ist W33. Es ist ein massereicher Komplex mit Sternbildung nahe der Ebene unserer Milchstraße. W33 ist etwa 13.000 Lichtjahre entfernt.

Was sind diese gelben Kugeln? Interessierte Laien fragten das beharrlich immer wieder. Die Laien beteiligten sich online am Milky Way Project. Als sie viele Spitzer-Bilder überflogen, fanden sie diese Gebilde und nannten sie „gelbe Kugeln“.

Nun gibt es eine Antwort. Man erkannte, dass die gelben Kugeln auf Spitzer-Bildern ein frühes Stadium bei der Entstehung massereicher Sterne sind. Sie erscheinen gelb, weil sich dort rote und grüne Bereiche überlappen. Diese Farben wurden den Spitzer-Wellenlängen von Staub und organischen Molekülen zugewiesen, die man als PAHs bezeichnet.

Gelbe Kugeln zeigen das Stadium, bevor junge, massereiche Sterne im Gas und Staub, der sie umgibt, Höhlen bilden. Sie erscheinen auf dem Spitzer-Bild als Blasen mit grünem Rand und rotem Zentrum. Die Erfolgsgeschichte der astronomischen Schwarmforschung ist nur ein Teil des Zooniversums.

Das Bild von Spitzer ist 0,5 Grad breit. Das entspricht in der geschätzten Entfernung von W33 etwa 100 Lichtjahren.

Zur Originalseite

Der galaktische Kern in Infrarot

Das Bild ist rötlich und voller Nebel und Sterne. Es zeigt die dichte Umgebung im Zentrum der Galaxis in Infrarot-Wellenlängen.

Bildcredit: Hubble: NASA, ESA und D. Q. Wang (U. Mass, Amherst); Spitzer: NASA, JPL und S. Stolovy (SSC/Caltech)

Was geschieht im Zentrum der Galaxis? Um das herauszufinden, vermaßen die Weltraumteleskope Hubble und Spitzer gemeinsam die Region und bildeten sie beispiellos detailreich in Infrarotlicht ab. Infrarotlicht ist bestens geeignet, um das Zentrum der Milchstraße zu erforschen, weil es nicht so stark von Staub gefiltert wird wie sichtbares Licht.

Das Bild entstand aus mehr als 2000 Aufnahmen, die 2008 mit dem Instrument NICMOS fotografiert wurden. NICMOS befindet sich an Bord des Weltraumteleskops Hubble. Das Bild misst 300 mal 115 Lichtjahre. Die Auflösung ist so hoch, dass Strukturen erkennbar sind, die nur 20-mal so groß sind wie unser Sonnensystem.

Das Bild zeigt Wolken aus leuchtendem Gas und dunklem Staub sowie drei große Sternhaufen. Magnetfelder kanalisieren links oben beim Arches-Sternhaufen das Plasma. Links unten schälen energiereiche Sternenwinde Säulen beim Quintuplet-Sternhaufen heraus. Rechts unten ist der massereiche Sternhaufen, der Sagittarius A* (Sgr A*) umgibt.

Warum mehrere helle, massereiche Sterne im Zentrum anscheinend nicht zu diesen Sternhaufen gehören, ist nicht bekannt.

Zur Originalseite

Andromeda in infrarotem und sichtbarem Licht

Die Andromedagalaxie im Bild hat ein ungewöhnliches Aussehen. Ihre markanten Staubbahnen wurden in Infrarotlicht aufgenommen. Diese Bilder wurden orange gefärbt und mit einem Bild in sichtbarem Licht kombiniert.

Bildcredit: Subaru-Teleskop (NAOJ), Weltraumteleskop Hubble; Mayall-4M-Teleskop (KPNO, NOAO), Digitized Sky Survey, Weltraumteleskop Spitzer; Bearbeitung und Bildrechte: Robert Gendler

Das künstlich gefärbte Kompositbild entstand aus Archiv-Bilddaten in sichtbarem und infrarotem Licht. Es zeigt die massereiche Andromedagalaxie M31. Die Spiralgalaxie ist etwa 2,5 Millionen Lichtjahre entfernt. Andromeda ist etwa doppelt so breit wie unsere Milchstraße. Sie ist die größte Galaxie in unserer Nähe.

In den ausgedehnten Spiralarmen von M31 liegt eine Population heller junger blauer Sterne. Sie ist vom verräterischen rötlichen Leuchten von Gebieten gesäumt, in denen Sterne entstehen. Man sieht sie auf den hier verwendeten Bilddaten im sichtbaren Licht. Sie wurden im Weltraum und am Boden aufgenommen.

Die Infrarotdaten des Weltraumteleskops Spitzer wurden in die detailreichen Rot- und Grünkanäle des Kompositbildes gemischt. Sie betonen die klumpigen Staubbahnen, die von jungen Sternen gewärmt werden. Die Staubbahnen winden sich nach innen immer enger zum Kern der Galaxie. Der warme Staub ist in Wellenlängen des sichtbaren Lichts unsichtbar. Er wurde hier orange gefärbt.

Im Bild sind auch die beiden kleinen Begleitgalaxien M110 (unten) und M32 (oben) dargestellt.

Zur Originalseite

Die doppelte Staubscheibe von HD 95086

Eine Staubscheibe ist innen ein riesiges dunkelgrünes Loch. In der Mitte ist ein heller Stern von Staub umgeben, außen herum kreisen Planeten mit gewaltigen Ringsystemen.

Illustrationscredit: Weltraumteleskop Spitzer, JPL, NASA

Wie sehen andere Sternsysteme aus? Um das herauszufinden, führen Forschende detaillierte Beobachtungen naher Sterne im Infrarotlicht durch. So sieht man, welche Sterne Staubscheiben haben, die Planeten bilden könnten.

Beobachtungen mit dem NASA-Weltraumteleskop Spitzer und dem Weltraumteleskop Herschel der ESA zeigten, dass das Planetensystem HD 95086 zwei Staubscheiben besitzt. Eine heiße Staubscheibe verläuft nahe am Heimatstern. Weiter draußen gibt es eine kühlere.

Diese Illustration zeigt, wie das System aussehen könnte. Hypothetische Planeten mit großen Ringen kreisen zwischen den Scheiben. Die Planeten haben vielleicht die große Lücke zwischen den Scheiben erzeugt, indem sie mit ihrer Gravitation Staub absorbierten und ablenkten.

HD 95086 ist ein blauer Stern mit etwa 60 Prozent mehr Masse, als unsere Sonne besitzt. Er ist zirka 300 Lichtjahre von der Erde entfernt. Man sieht ihn mit einem Fernglas im Sternbild Schiffskiel. Die Untersuchung des Systems um HD 95086 hilft vielleicht, die Entstehung und Entwicklung unseres Sonnensystems und der Erde besser zu verstehen.

Zur Originalseite

Supernovaüberrest Puppis A

Die faserartige bunte Wolke im Bild zeigt den Supernovaüberrest Puppis A im Sternbild Achterdeck des Schiffes. Die expandierende Wolke wurde in Röntgen- und Infrarotlicht aufgenommen und farbcodiert abgebildet.

Bildcredit: Röntgen: NASA/CXC/IAFE/ G. Dubner et al., ESA/XMM-Newton; Infrarot: NASA/ESA/JPL-Caltech/GSFC/ R. Arendt et al.

Der Supernovaüberrest Puppis A entstand durch die Explosion eines massereichen Sterns. Er breitet sich ins interstellare Medium aus. Seine Entfernung beträgt etwa 7000 Lichtjahre. In dieser Distanz ist die Sondierung in Falschfarben der komplexen Expansion etwa 180 Lichtjahre groß.

Das Bild basiert auf den vollständigsten Daten, die bislang in Röntgen- und Infrarotlicht erhoben wurden. Die Röntgendaten stammen von Chandra und XMM/Newton, die Infrarot-Daten vom Weltraumteleskop Spitzer.

Das faserartige Röntgenlicht ist in Blau abgebildet. Es stammt von Gas, das durch die Stoßwelle der Supernova aufgeheizt wurde. Das rot und grün dargestellte Infrarotlicht stammt von warmem Staub. Die hellen Pastelltöne zeigen Regionen, wo sich komprimiertes Gas und aufgewärmter Staub mischen.

Die Supernova wurde durch einen Kollaps im massereichen Sterneninneren ausgelöst. Ihr Licht erreichte die Erde vor etwa 3700 Jahren. Der Supernovaüberrest Puppis A ist weiterhin eine starke Quelle am Röntgenhimmel.

Zur Originalseite

Im Inneren des Flammennebels

Das Bild zeigt den Flammennebel im Sternbild Orion und seine Umgebung. Darüber wurde eine Röntgen-Infrarot-Abbildung gelegt.

Bildcredit: Optisch: DSS; Infrarot: NASA/JPL-Caltech; Röntgen: NASA/CXC/PSU/ K.Getman, E.Feigelson, M.Kuhn und das MYStIX-Team

Das optische Bild zeigt eine staubige, überfüllte Sternbildungsregion im Gürtel des Orion. Sie ist etwa 1400 Lichtjahre entfernt. Daraus sticht der Flammennebel hervor. Röntgendaten des Chandra-Observatoriums und Infrarotbilder des Weltraumteleskops Spitzer blicken tief ins Innere der Wolken. Sie bestehen aus leuchtendem Gas und undurchsichtigen Staubwolken.

Wenn ihr den Mauspfeil über das Bild schiebt oder darauf klickt, kommen viele Sterne im jungen eingebetteten Haufen NGC 2024 zum Vorschein. Sie sind nur 200.000 bis 1,5 Millionen Jahre alt. Das Kompositbild aus Röntgen- und Infrarot-Daten ist etwa 15 Lichtjahre breit. Es zeigt das Zentrum des Flammennebels.

Die Röntgen-Infrarot-Daten zeigen auch, dass sich die jüngsten Sterne auf die Mitte des Haufens befinden. Das widerspricht einfachen Modellen der Sternbildung dieser Sternschmiede. Diese Modelle besagen, dass die Sternbildung zuerst im dichteren Zentrum beginnt. Dann wandert sie schrittweise nach außen zum Rand. Dabei sollten ältere Sterne im Zentrum des Flammennebels zurückbleiben, nicht die jüngeren.

Zur Originalseite