Andromedas vergangene und künftige Sterne

Das Bild zeigt M31, die Andromedagalaxie, in orange gefärbtem Infrarotlicht und im sichtbaren Licht, das weiß und blau gefärbt ist.

Bildcredit: NASA, NSF, NOAJ, Hubble, Subaru, Mayall, DSS, Spitzer; Bearbeitung und Bildrechte: Robert Gendler und Russell Croman

Dieses Bild von Andromeda zeigt nicht nur, wo es jetzt Sterne gibt, sondern auch, wo bald Sterne sein werden. Die große, schöne Andromedagalaxie M31 ist eine etwa 2,5 Millionen Lichtjahre entfernte Spiralgalaxie. Für dieses faszinierende Kompositbild von Andromeda in Wellenlängen innerhalb und außerhalb des sichtbaren Lichts wurden Aufnahmen von weltraum- und bodenbasierten Observatorien kombiniert.

Sichtbares Licht zeigt, wo die Sterne von M31 jetzt sind. Sie leuchten weiß und blau und wurden von den Teleskopen Hubble, Subaru und Mayall abgebildet. Infrarotlicht zeigt, wo in M31 in naher Zukunft Sterne entstehen. Es ist orangefarben abgebildet und wurde vom Weltraumteleskop Spitzer der NASA aufgenommen.

Das Infrarotlicht zeigt gewaltige, von Sternen erwärmte Staubbahnen entlang der Spiralarme von Andromeda. Der Staub ist ein Indikator für die gewaltige Menge an interstellarem Gas in der Galaxie, es ist Rohmaterial für künftige Sternbildung. Diese neuen Sterne entstehen wahrscheinlich im Laufe der nächsten hundert Millionen Jahre, lange bevor Andromeda in etwa fünf Milliarden Jahren mit unserer Milchstraße verschmilzt.

Zur Originalseite

Der Krebsnebel in vielen Wellenlängen

Der Krebsnebel Messier 1 im Sternbild Stier, abgebildet in vielen Wellenlängen des elektromagnetischen Spektrums.

Bildcredit: NASA, ESA, G. Dubner (IAFE, CONICET-Universität von Buenos Aires) et al.; A. Loll et al.; T. Temim et al.; F. Seward et al.; VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; Hubble/STScI

Beschreibung: Der Krebsnebel ist als M1 katalogisiert, er ist das erste Objekt auf Charles Messiers berühmter Liste an Dingen, die keine Kometen sind. Heute wissen wir, dass der Krebsnebel ein Supernovaüberrest ist, also die sich ausdehnenden Trümmer von der finalen Explosion eines massereichen Sterns. Diese Explosion wurde 1054 n. Chr. auf dem Planeten Erde beobachtet.

Dieses beeindruckende neue Bild zeigt eine Ansicht der Krabbe aus dem 21. Jahrhundert, es stellt Bilddaten aus dem gesamten elektromagnetischen Spektrum in Wellenlängen des sichtbaren Lichts dar. Daten aus dem Weltraum von Chandra (Röntgen), XMM-Newton (Ultraviolett), Hubble (sichtbares Licht) und Spitzer (Infrarot) sind in violetten, blauen, grünen und gelben Farbtönen abgebildet. Radio-Daten des Very Large Array vom Boden sind rot eingefärbt.

Der Krebs-Pulsar ist eines der exotischsten Objekte, die Astronominnen und Astronomen heute kennen. Es der helle Punkt nahe der Bildmitte – ein Neutronenstern, der 30 Mal pro Sekunde rotiert. Wie ein kosmischer Dynamo sorgt dieser kollabierte Überrest des Sternkerns für die Emissionen des Krebsnebels im gesamten elektromagnetischen Spektrum.

Der Krebsnebel ist ungefähr 12 Lichtjahre groß und 6500 Lichtjahre entfernt, ihr seht ihn im Sternbild Stier.

Wien, Ladenkonzept Nähe Votivkirche: Kostenlose Kalender (leichte Mängel)

Zur Originalseite

Flug durch den Orionnebel in Infrarotlicht

Videocredit: NASA, Weltraumteleskop Spitzer, Universe of Learning; Visualisierung: F. Summers (STScI) et al.; Musik und Lizenz: Serenade für Streicher (A. Dvořák), Advent Chamber Orch.

Was sieht man bei einem Flug in den Orionnebel? Diese dynamische Visualisierung des Orionnebels entstand aus echten astronomischen Daten mit ausgefeilter Film-Rendering-Technik.

Das digital modellierte Video basiert auf Infrarotdaten des Weltraumteleskops Spitzer. Es zeigt eine berühmte Sternbildungsstätte aus nächster Nähe, die wir aus einer Entfernung von 1500 Lichtjahren sehen. Die Blickrichtung läuft ein Tal entlang, das in der Wand der riesigen Molekülwolke in der Region verläuft. Es ist ein Lichtjahr breit. Orions Tal endet in einer Höhlung, die von den energiereichen Winden und der Strahlung der massereichen Zentralsterne im Trapez-Sternhaufen geschaffen wurde.

Der ganze Orionnebel ist etwa 40 Lichtjahre groß und liegt im selben Spiralarm unserer Galaxis wie die Sonne.

Zur Originalseite

Das galaktische Zentrum in Infrarotlicht

Das Infrarot-Weltraumteleskop Spitzer zeigt das Zentrum der Galaxis, das 26.700 Lichtjahre entfernt im Sternbild Schütze liegt.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer, Susan Stolovy (SSC/Caltech) et al.; Überarbeitung: Judy Schmidt

Beschreibung: Wie sieht das Zentrum unserer Galaxis aus? Im sichtbaren Licht ist das Zentrum der Milchstraße von Wolken aus undurchsichtigem Staub und Gas versteckt. Doch auf dieser faszinierenden Ansicht dringen die Infrarotkameras des Weltraumteleskops Spitzer durch einen Großteil des Staubs und zeigen die Sterne in der überfüllten Region des galaktischen Zentrums.

Das detailreiche Falschfarbenbild ist ein Mosaik aus vielen kleinen Einzelaufnahmen. Es zeigt ältere kühle Sterne in bläulichen Farbtönen. Rot und braun leuchtende Staubwolken stehen in Verbindung mit jungen, heißen Sternen in Sternentstehungsgebieten. Kürzlich stellte sich heraus, dass das Zentrum der Milchstraße in der Lage ist, neue Sterne zu bilden.

Das galaktische Zentrum liegt etwa 26.700 Lichtjahre entfernt im Sternbild Schütze. In dieser Entfernung wäre dieses Bild ungefähr 900 Lichtjahre breit.

Zur Originalseite

Im Inneren des Flammennebels

Der Flammennebel NGC 2024 ist 1400 Lichtjahre entfernt im Sternbild Orion in der Nähe des Sterns Alnitak.

Bildcredit: NASA, JPL-Caltech, IPAC Infrared Science ArchiveBearbeitung: Amal Biju

Beschreibung: Der Flammennebel ist 1400 Lichtjahre entfernt und ein Prachtstück auf optischen Bildern der staubigen, dicht gedrängten Sternbildungsregionen im Oriongürtel und beim östlichsten Gürtelstern Alnitak. Dieser ist der helle Stern rechts auf diesem Infrarotbild des Weltraumteleskops Spitzer.

Die Infrarotansicht ist ungefähr 15 Lichtjahre breit und führt euch ins Innere des Nebels mit leuchtendem Gas und undurchsichtigen Staubwolken. Sie zeigt viele Sterne des in jüngster Zeit entstandenen, eingebetteten Sternhaufens NGC 2024, der etwa in der Mitte konzentriert ist. Die Sterne in NGC 2024 sind zwischen 200.000 und 1,5 Millionen Jahre jung.

Die Daten lassen den Schluss zu, dass die jüngsten Sterne um die Mitte des Flammennebelhaufens konzentriert sind. Das ist das Gegenteil der einfachsten Modelle für Sternentstehung in einem Sternentstehungsgebiet, die besagen, dass die Sternbildung im dichten Zentrum eines Molekülwolkenkerns beginnt. Das Ergebnis erfordert ein komplexeres Modell für Sternbildung im Inneren des Flammennebels.

Zur Originalseite

Das Tal in Orion

Nahaufnahme des berühmten Orionnebels, die aus Daten der Weltraumteleskope Hubble und Spitzer modelliert wurde.

Visualisierungscredit: NASA, ESA, F. Summers, G. Bacon, Z. Levay, J. DePasquale, L. Frattare, M. Robberto, M. Gennaro (STScI) and R. Hurt (Caltech/IPAC)

Beschreibung: Diese interessante, ungewohnte Ansicht des Orionnebels ist eine Visualisierung, die auf astronomischen Daten und Filmwiedergabetechniken basiert.

Auf Tuchfühlung mit dem berühmten Sternentstehungsgebiet, das normalerweise aus einer Entfernung von 1500 Lichtjahren zu sehen ist, zeigt das digital modellierte Bild links eine Darstellung in sichtbarem Licht, basierend auf Hubble-Daten. Diese geht über zu Infrarotdaten des Weltraumteleskops Spitzer auf der rechten Seite. Der mittlere Bildausschnitt blickt ein Tal entlang, das breiter ist als ein Lichtjahr, und das in der Wand der gewaltigen Molekülwolke der Region liegt.

Das Tal des Orion endet in einem Hohlraum, der von den energiereichen Winden und der Strahlung der massereichen Zentralsterne des Trapez-Sternhaufens geschaffen wurde. Das Einzelbild stammt aus einem dreidimensionalen Video in mehreren Wellenlängen, das dem Betrachter einen immersiven Drei-Minuten-Flug durch den großen Orionnebel zeigt.

Zur Originalseite

LDN 1471 – eine vom Wind geformte Sternenhöhle

Die Höhle LDN 1471 mit einem Protostern, der ein Herbig-Haro-Objekt formt, wurde vom Weltraumteleskop Spitzer entdeckt.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Wie entstand diese ungewöhnliche Parabel? Die beleuchtete Höhle ist als LDN 1471 bekannt. Sie entstand um einem neu entstehenden Stern. Er ist das helle Licht am Scheitelpunkt der Parabel. Der Protostern erzeugt einen stellaren Ausfluss. Dieser tritt in Wechselwirkung mit dem umgebenden Material der Perseus-Molekülwolke und hellt sie auf.

Wir sehen nur eine Seite des Hohlraums. Die andere Seite ist vom dunklen Staub verdeckt. Die Parabolform entsteht durch die Aufweitung der Höhle im Lauf der Zeit durch Sternenwind. An beiden Seiten des Protosterns sind zwei weitere Strukturen zu sehen. Sie sind als Herbig-Haro-Objekte bekannt. Herbig-Haro-Objekte entstehen durch die Wechselwirkung des Ausstroms mit der umgebenden Materie. Wie die Schlieren in den Wänden des Hohlraums entstehen, ist noch nicht bekannt.

Dieses Bild wurde mit dem Weltraumteleskop Hubble der NASA und ESA aufgenommen. Ursprünglich wurde es vom Weltraumteleskop Spitzer entdeckt.

Zur Originalseite

Spitzers Trifid

Siehe Beschreibung. Der Trifidnebel Messier 20, abgebildet vom Weltraumteleskop Spitzer in Infrarot; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: J. Rho (SSC/Caltech), JPL-Caltech, NASA

Beschreibung: Der Trifidnebel, auch bekannt als Messier 20, ist mit einem kleinen Teleskop leicht zu finden. Er ist ungefähr 30 Lichtjahre groß, 5500 Lichtjahre entfernt und ein beliebtes Ziel für kosmische Touristen im nebelreichen Sternbild Schütze.

Wie schon sein Name andeutet, zeigen Bilder in sichtbarem Licht einen Nebel, der durch dunkle, undurchsichtige Staubbahnen dreigeteilt ist. Doch dieses durchdringende Infrarotbild zeigt Trifids Fasern aus leuchtenden Staubwolken und neu entstandenen Sternen. Die Falschfarbenansicht stammt aus dem Vermächtnis des Weltraumteleskops Spitzer. Astronomen zählten mithilfe dieser Infrarot-Bilddaten die neu entstandenen und noch unentwickelten Sterne, die sonst in den Entstehungswolken aus Staub und Gas dieses faszinierenden Sternbildungsgebietes verborgen sind.

Spitzer wurde 2003 gestartet und erforschte das Infrarot-Universum in einem Orbit um die Sonne, auf dem es der Erde hinterherzog. Zu Beginn dieses Jahres, am 30. Januar, wurden seine wissenschaftlichen Arbeiten eingestellt.

Zur Originalseite