LDN 1471: Eine vom Wind geformte Sternenhöhle

Siehe Beschreibung. XXX Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Wer oder was hat nur diese parabolische Struktur geschaffen? Diese beleuchtete Höhlung, ist als LDN 1471 bekannt. Sie wurde von dem gerade entstehenden Stern geformt, der am Scheitel der Parabel als helle Lichtquelle erkennbar ist.

Dieser Protostern erfährt gerade einen starken Sternwind, der dann mit umgebenden Material in der Perseus-Molekülwolke wechselwirkt und eine Aufhellung bewirkt.

Wir sehen nur eine Seite der Höhlung, während die andere Seite von dunklem Staub verdeckt wird. Die parabolische Form kommt daher, dass der Sternwind sich kegelförmig aufweitet, während er über die Zeit die Höhlung in die Wolke bläst.

Auf der anderen Seite des Protosterns sind zwei weitere Strukturen zu sehen: diese so genannten Herbig-Haro Objekte werden ebenfalls durch die Wechselwirkung des Sternwinds mit dem Umgebungsmaterial geformt. Die Ursache für die Rillen an den Wänden des Hohlraums ist jedoch nach wie vor unbekannt.

Das hier gezeigte Bild wurde vom Hubble Weltraumteleskop der NASA und ESA aufgenommen, nachdem die Struktur zuvor vom Spitzer Weltraumteleskop entdeckt worden war.

Fast Hyperraum: APOD-Zufallsgenerator

Zur Originalseite

NGC 602: Auster-Sternhaufen

Um einen Sternhaufen ist eine Gaswolke ausgebreitet, die wie eine Auster aussieht. Das Rollover-Bild zeigt denselben Haufen nicht nur im sichtbaren Licht, sondern auch im Röntgen- und Infrarotbereich.

Bildcredit: Röntgen: Chandra: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Sichtbares Licht: Hubble: NASA/STScI; Infrarot: Spitzer: NASA/JPL-Caltech

Die Wolken sehen wie eine Muschel aus und die Sterne wie Perlen – aber es gibt noch viel mehr zu entdecken! Gegen den Rand der Kleinen Magellanschen Wolke, einer Satellitengalaxie, die rund 200 Tausend Lichtjahre entfernt ist, liegt der 5 Millionen Jahre alte Sternhaufen NGC 602.

In diesem beeindruckenden Hubble-Bild, das mit Röntgenbildern des Chandra Observatory und Infrarotbildern des Spitzer-Teleskops ergänzt wurde, sieht man NGC 602 umgeben von seiner Geburtshülle aus Gas und Staub.

Fantastische Rillen und zurückgeschleudertes Gas deuten darauf hin, dass energiereiche Strahlung und Schockwellen der massereichen jungen Sterne in NGC 602 das staubige Material abgetragen und den Prozess der Sternentstehung ausgelöst haben, der sich vom Zentrum des Sternhaufens entfernt.

Bei der geschätzten Entfernung der Kleinen Magellanschen Wolke erstreckt sich das Bild über etwa 200 Lichtjahre, aber eine beeindruckende Auswahl an Hintergrundgalaxien ist in dieser gestochen scharfen Ansicht ebenfalls zu sehen. Die Hintergrundgalaxien befinden sich Hunderte von Millionen Lichtjahren – oder mehr – hinter NGC 602.

Zur Originalseite

Zeta Oph: Entlaufener Stern

Links neben dem Stern in der Mitte leuchtet ein roter Nebelschleier mit grünen Enden, der wie eine Bugwelle um den Stern gekrümmt ist.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer

Wie ein Schiff, das durch die kosmische See pflügt, erzeugt der entlaufende Stern Zeta Ophiuchi diese bogenförmige interstellare Bugwelle oder Bugschock. Diese Bugwelle ist in diesem atemberaubenden Infrarotporträt zu sehen.

In der Falschfarbenansicht liegt der bläuliche Stern Zeta Oph, der etwa 20-mal massereicher als die Sonne ist, nahe der Bildmitte. Er bewegt sich mit 24 Kilometern pro Sekunde nach links. Sein starker Sternwind eilt ihm voraus, komprimiert und erhitzt das staubige interstellare Material und formt die gekrümmte Schockfront.

Was hat diesen Stern in Bewegung gesetzt? Zeta Oph war wahrscheinlich einst Teil eines Doppelsternsystems, dessen Begleitstern massereicher war und daher eine kürzere Lebensdauer hatte. Als der Begleiter als Supernova explodierte und dabei katastrophal an Masse verlor, wurde Zeta Oph aus dem System geschleudert.

Zeta Oph ist etwa 460 Lichtjahre entfernt und leuchtet 65.000-mal heller als die Sonne. Er wäre einer der hellsten Sterne am Himmel, wäre er nicht von verdeckendem Staub umgeben. Das Bild überspannt etwa 1,5 Grad oder 12 Lichtjahre bei der geschätzten Entfernung von Zeta Ophiuchi.

Im Januar 2020 schaltete die NASA das Spitzer-Weltraumteleskop in den Sicherheitsmodus und beendete damit seine 16-jährige erfolgreiche Erforschung unseres Universums im Infrarotbereich.

Zur Originalseite

Frühere und künftige Sterne in Andromeda

Das Bild zeigt M31, die Andromedagalaxie, sowohl im infraroten Licht, das orange gefärbt ist, als auch im sichtbaren Licht, das weiß und blau gefärbt ist.

Bildcredit: NASA, NSF, NOAJ, Hubble, Subaru, Mayall, DSS, Spitzer; Bearbeitung und Bidrechte: Robert Gendler und Russell Croman

Dieses Bild von Andromeda zeigt nicht nur, wo jetzt Sterne sind, sondern auch, wo einmal Sterne sein werden. Die große, schöne Andromedagalaxie M31 ist eine Spiralgalaxie, sie ist etwa 2,5 Millionen Lichtjahre entfernt. Dieses Kompositbild von Andromeda entstand aus Bilddaten von Observatorien auf der Erde und im Weltraum, die Wellenlängen liegen innerhalb und außerhalb des sichtbaren Lichts.

Das sichtbare Licht zeigt, wo jetzt Sterne in M31 sind, dargestellt in weißen und blauen Farbtönen und aufgenommen mit den Teleskopen Hubble, Subaru und Mayall. Das Infrarotlicht zeigt, wo bald die künftigen Sterne von M31 entstehen, abgebildet in orangefarbenen Tönen und aufgenommen mit dem NASA-Weltraumteleskop Spitzer.

Im Infrarotlicht sind gewaltige Staubbahnen erkennbar, die von Sternen in den Spiralarmen der Andromedagalaxie aufgewärmt werden. Dieser Staub markiert das umfangreiche interstellare Gas der Galaxie. Es ist das Rohmaterial für künftige Sternbildung.

Die neuen Sterne entstehen wahrscheinlich im Laufe der nächsten hundert Millionen Jahre. Das ist lange bevor Andromeda in etwa 5 Milliarden Jahren mit unserer Milchstraßengalaxie verschmilzt.

Zur Originalseite

Methan auf fernem Exoplaneten entdeckt

Links unten leuchtet ein kleiner roter Stern, in der Mitte ist eine kleinere Sichel eines Mondes, rechts füllt die beleuchtete Sichel eines Planeten das halbe Bild.

Illustrationscredit: Ahmad Jabakenji (ASU Libanon, Nordstern Weltraumkunst); Daten: NASA, ESA, CSA, JWST

Wo könnte es sonst noch Leben geben? Eine der großen offenen Fragen der Menschheit, nämlich die Suche nach Planeten, auf denen es vielleicht extrasolares Leben gibt, kam 2019 einen großen Schritt voran: In der Atmosphäre des fernen Exoplaneten K2-18b wurde eine beträchtliche Menge Wasserdampf entdeckt.

Der Planet und sein Elternstern K2-18 liegen etwa 124 Lichtjahre entfernt im Sternbild Löwe (Leo). Der Exoplanet ist deutlich größer und massereicher als unsere Erde, doch er kreist in der bewohnbaren Zone seines Heimatsterns. K2-18 ist zwar rötlicher als unsere Sonne, leuchtet aber am Himmel von K2-18b ähnlich hell wie die Sonne am Himmel der Erde.

Die Entdeckung von Wasser in der Atmosphäre im Jahr 2019 gelang mit Daten dreier Weltraumteleskope: Hubble, Spitzer und Kepler. Diese Teleskope zeichneten die Absorption der Farben von Wasserdampf auf, während sich der Planet vor seinem Stern vorbeibewegte.

2023 wurden bei weiteren Beobachtungen durch das Weltraumteleskop Webb im Infrarotlicht Hinweise auf weitere Moleküle entdeckt, die auf Leben hindeuten, zum Beispiel Methan.

Die Illustration zeigt rechts den Exoplaneten K2-18b, der von einem Mond (Mitte) umkreist wird. Beide umrunden zusammen den roten Zwergstern links unten.

Zur Originalseite

Die Sombrerogalaxie in Infrarot

Mitten im Bild schwebt ein rosafarbener Ring um eine blau leuchtende Wolke.

Bildcredit: R. Kennicutt (Steward Obs.) et al., SSC, JPL, Caltech, NASA

Dieser schwebende Ring ist so groß wie eine Galaxie. Eigentlich ist er eine Galaxie – oder zumindest ein Teil davon: Es ist die fotogene Sombrerogalaxie, eine der größten Galaxien im nahen Virgo-Galaxienhaufen. Das dunkle Band aus Staub, das in sichtbarem Licht den mittleren Abschnitt der Sombrerogalaxie verdeckt, strahlt hell im Infrarotlicht.

Dieses digital geschärfte Bild wurde mit dem Weltraumteleskop Spitzer im Orbit aufgenommen. Es zeigt das infrarote Leuchten, das in Falschfarben über ein Bild des Weltraumteleskops Hubble in sichtbarem Licht gelegt wurde.

Die Sombrerogalaxie ist auch als M104 bekannt. Sie ist etwa 50.000 Lichtjahre groß und 28 Millionen Lichtjahre entfernt. M104 seht ihr mit einem kleinen Teleskop im Sternbild Jungfrau.

Zur Originalseite

Der Adlernebel mit heißen Röntgensternen

Säulen aus Gas und dunklem Staub verlaufen diagonal von links unten nach rechts oben. Leuchtstarke Röntgenquellen sind als helle Punkte um das Bild herum eingeblendet. Infraroter Staub leuchtet hinter den Säulen.

Bildcredit: Röntgen: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; Infrarot: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Sichtbares Licht: Hubble: NASA/ESA/STScI, ESO; Bildbearbeitung: L. Frattare, J. Major, N. Wolk und K. Arcand

Wie sehen die berühmten Sternsäulen im Adlernebel in Röntgenlicht aus? Um das herauszufinden, spähte das NASA-Röntgenobservatorium Chandra im Orbit in und durch diese interstellaren Berge der Sternbildung. Es zeigte sich, dass die Staubsäulen selbst nicht viel Röntgenlicht abstrahlt, doch es kamen viele kleine, aber helle Röntgenquellen zum Vorschein. Sie sind als helle, rötliche Punkte abgebildet.

Das Bild ist ein Komposit aus Aufnahmen von Chandra (Röntgen), XMM (Röntgen), JWST (Infrarot), Spitzer (Infrarot), Hubble (visuell) und dem VLT (visuell). Welche Sterne diese Röntgenstrahlen erzeugen, wird weiterhin erforscht, doch einige sind vermutlich heiße, kürzlich entstandene Sterne mit geringer Masse, andere dagegen heiße, ältere Sterne mit großer Masse.

Die heißen Röntgensterne sind im Bild verteilt. Schon früher wurden sie als verdampfende gasförmige Globulen (EGGS) erkannt. In sichtbarem Licht sind sie unsichtbar, und derzeit sind sie auch nicht heiß genug, um Röntgenlicht abzustrahlen.

Zur Originalseite

Der rotierende Pulsar im Krebsnebel

Das Bild zeigt das Innere des Krebsnebels mit dem rotierenden Neutronenstern - dem Krebs-Pulsar, der die Energie für das Leuchten des Krebsnebels M1 liefert.

Bildcredit: NASA: Röntgen: Chandra (CXC), Optisch: Hubble (STScI), Infrarot: Spitzer (JPL-Caltech)

Im Inneren des Krebsnebels befindet sich ein magnetischer Neutronenstern. Er ist als Krebs-Pulsar bekannt, hat die Größe einer Stadt und rotiert 30-mal pro Sekunde. Es ist der helle Punkt im Zentrum des gasförmigen Wirbels im Kern des Nebels.

Das spektakuläre Bild ist etwa zwölf Lichtjahre breit, es zeigt leuchtendes Gas, Höhlen und wirbelnde Fasern um das Zentrum des Krebsnebels. Das Bild kombiniert Aufnahmen in sichtbarem Licht des Weltraumteleskops Hubble in Violett, Röntgen-Daten des Röntgen-Observatoriums Chandra in Blau und Infrarot-Daten des Weltraumteleskops Spitzer in Rot.

Wie ein kosmischer Dynamo liefert der Krebspulsar die Energie für die Emissionen des Nebels. Er treibt eine Stoßwelle durch das umgebende Material und beschleunigt die Elektronen auf spiralförmigen Bahnen.

Der rotierende Pulsar besitzt mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern eines explodierten massereichen Sterns. Die äußeren Teile des Krebsnebels sind die expandierenden Überreste der Gasbestandteile des Sterns. Die Supernovaexplosion wurde im Jahr 1054 auf dem Planeten Erde beobachtet.

Erforsche das Universum mit dem APOD-Zufallsgenerator
Zur Originalseite