Das Sonnenspektrum mit fehlenden Farben

Das Bild in Regenbogenfarben zeigt ein vollständiges, hoch aufgelöstes Sonnenspektrum im sichtbaren Licht. Die Farben von unten nach oben sind blau, grün, gelb und rot.

Bildcredit: Nigel Sharp (NSF), FTS, NSO, KPNO, AURA, NSF

Beschreibung: Es ist immer noch nicht bekannt, warum im Sonnenlicht manche Farben fehlen. Hier sind alle sichtbaren Farben der Sonne dargestellt, indem Sonnenlicht durch ein prismenartiges Instrument geleitet wurde. Das Spektrum entstand am McMath-Pierce-Sonnenobservatorium und zeigt in erster Linie, dass unsere Sonne zwar weiß erscheint, tatsächlich aber Licht in fast jeder Farbe abstrahlt und im gelbgrünen Spektralbereich am hellsten leuchtet.

Die dunklen Flecken im oben gezeigten Spektrum stammen von Gas in oder über der Sonnenoberfläche, das Sonnenlicht absorbiert, welches darunter abgestrahlt wird. Da unterschiedliche Gasarten verschiedene Farben des Lichtes absorbieren, kann man aus diesen Flecken ableiten, aus welchen Gasen die Sonne besteht. Helium zum Beispiel wurde 1870 erstmals in einem Sonnenspektrum entdeckt, erst danach fand man es auch hier auf der Erde. Inzwischen wurde die Mehrheit der Absorptionslinien im Spektrum bestimmt – aber nicht alle.

Zur Originalseite

Sternfarben und Pinyon-Kiefer

Vor einem Hintergrund verschwommener bunter Sterne ist die Silhouette eines Nadelzweigs zu sehen.

Bildcredit und Bildrechte: Stan Honda

Der schöne, leuchtende Schmuck dieser Pinyon-Kiefer sind helle Sterne im Sternbild Skorpion und das zarte Leuchten der zentralen Milchstraße. Das flach wirkende Bild ist auf die Nähe fokussiert.

Die Aufnahme wurde im Juni am nördlichen Rand des Grand Canyon auf dem Planeten Erde fotografiert. Es zeigt die Kiefernnadeln auf dem Zweig scharf und die fernen Sterne verschwommen, sodass ihr Licht interessante farbige Scheiben bildet. Die Farbe eines Sterns zeigt seine Temperatur.

Die meisten verschwommenen hellen Sterne im Skorpion haben einen bläulichen Farbton, ihre Oberflächentemperatur ist viel höher als die der Sonne. Der Riesenstern Antares im Zentrum des Skorpions ist kühler, größer und deutlich röter als die Sonne.

Auf scharf gestellten Teleskopansichten wäre die weißliche Scheibe rechts oben sofort erkennbar, es ist der beringte Gasriese Saturn, der Sonnenlicht reflektiert.

Zur Originalseite

Schillernde Wolken über Thamserku

Über einem Gipfel im Himalaya schillern irisierende Wolken in vielen Farben des Spektrums.

Bildcredit und Bildrechte: Oleg Bartunov

Wie kann eine Wolke in verschiedenen Farben leuchten? Dieses relativ seltene Phänomen wird als irisierende Wolken bezeichnet. Dabei sind ungewöhnlich lebhafte Farben oder sogar ein ganzes Farbspektrum zu sehen.

Diese Wolken bestehen aus winzigen Wassertröpfchen, die allesamt fast gleich groß sind. Wenn die Sonne an der richtigen Stelle steht und selbst von dicken Wolken verdeckt ist, brechen diese dünneren Wolken das Sonnenlicht in einer fast einheitlichen Weise. Dabei werden verschiedene Farben unterschiedlich stark abgelenkt. Daher erreichen die einzelnen Farben den Beobachter aus leicht unterschiedlichen Richtungen.

Bei vielen Wolken beginnen Regionen mit einheitlicher Tröpfchengröße zu schillern. Sie werden aber rasch zu dick, sie werden durchmischt oder sind bald zu weit von der Sonne entfernt, um in auffälligen Farben zu schillern. Diese irisierende Wolke wurde 2009 im Himalaja in Nepal fotografiert. Sie leuchten hinter dem 6600-Meter-Gipfel Thamserku.

Zur Originalseite

M106 im ganzen Spektrum

Aus einer Spiralgalaxie mit Staubbahnen und rötlichen Sternbildungsgebieten ragen violette Arme, die sich über die Galaxienscheibe erheben. Sie sind auf Bildern in sichtbarem Licht nicht zu sehen.

Bildcredits: Röntgen – NASA / CXC / Caltech / P.Ogle et al., Optisch – NASA/STScI, Infrarot – NASA/JPL-Caltech, Radio – NSF/NRAO/VLA

Die Spiralarme der hellen, aktiven Galaxie M106 breiten sich auf diesem Multiwellenlängen-Porträt aus. Es entstand aus Bilddaten von Radio- bis Röntgenstrahlen und zeigt die Galaxie im ganzen elektromagnetischen Spektrum. M106 ist auch als NGC 4258 bekannt. Sie befindet sich im nördlichen Sternbild Jagdhunde. Die gut vermessene Entfernung zu M106 beträgt 23,5 Millionen Lichtjahre. Damit hat diese kosmische Szenerie einen Durchmesser von etwa 60.000 Lichtjahren.

Typisch für große Spiralgalaxien sind dunkle Staubbahnen, junge Sternhaufen und Sternbildungsgebiete. Sie säumen die Spiralarme, die in einem hellen Kern zusammenlaufen.

Doch dieses Komposit betont zwei anomale Arme in Radio (violett) und Röntgen (blau). Sie erheben sich anscheinend aus der Zentralregion von M106. Sie sind Hinweise auf energiereiche Strahlströme von Materie, die in die Galaxienscheibe rasen. Die Strahlen werden wahrscheinlich mit Materie gespeist, die in ein massereiches zentrales Schwarzes Loch fällt.

Zur Originalseite

Polarlicht und ungewöhnliche Wolken über Island

Hinter einem Gletscher und einem See leuchten grüne Polarlichter und der Mond.

Bildcredit und Bildrechte: Stéphane Vetter (Nuits sacrées)

Was geschieht am Himmel? In dieser kalten Winternacht in Island passiert ziemlich viel. Im Vordergrund liegt der größte Gletscher Islands: der Vatnajökull. Weit links scheinen helle, grüne Polarlichter aus dem Gletscher zu strömen, als wäre er ein Vulkan. Das Polarlicht wird vom See im Vordergrund reflektiert, dem Jökulsárlón.

Rechts befindet sich eine lange, ungewöhnliche Lenticularis. Sie ist von grünem Licht gefärbt, das von einem anderen Polarlicht weit dahinter abgestrahlt wird. Knapp über dieser Lenticularis zeigt eine ungewöhnliche irisierende Lenticularis einen großen Umfang an Spektralfarben. Weit hinter der Lenticularis geht der Mond unter, und weit hinter dem Mond gehen Sterne unter. Dieses Bild wurde Ende März 2012 fotografiert.

Zur Originalseite

Das Blitz-Spektrum unserer Sonne

Links ist die Korona der Sonne bei einer Sonnenfinsternis hinter dem Mond zu sehen, rechts ist sie mit einem Prisma in ihre Spektralfarben aufgefächert.

Bildcredit und Bildrechte: Constantine Emmanouilidi

In einer Sekunde änderte sich am 3. November während der kurzen totalen Phase einer Sonnenfinsternis das sichtbare Spektrum der Sonne von Absorption zu Emission. Das zeitlich gut geplante Bild des aufklarenden Himmels entstand über Gabun in Zentralafrika mit Teleobjektiv und Beugungsgitter. Es zeigt den flüchtigen Augenblick. Das alles überflutende Licht der Sonnenscheibe war vom Mond verdeckt.

Normalerweise bestimmt das Absorptionsspektrum der Photosphäre das Licht der Sonne. Es war hier verborgen. Übrig bleiben einzelne Finsternisbilder, die rechts neben der verfinsterten Sonne durch das Beugungsgitter aufgefächert sind. Sie zeigen Spektralfarben jeder Wellenlänge des Lichts. Diese Spektralfarben werden von den Atomen im dünnen Bogen der Chromosphäre der Sonne abgestrahlt.

Die hellsten Bilder entsprechen den stärksten chromosphärischen Emissionslinien. Sie entstehen durch Wasserstoffatome. Ganz rechts ist die rote H-alpha-Emission abgebildet, links die blaue H-Beta-Emission. Das hellgelbe Emissionsbild dazwischen entsteht durch Heliumatome. Dieses Element wurde erstmals im Blitz-Spektrum der Sonne entdeckt.

Zur Originalseite

Alle Farben der Sonne

Das Spektrum der Sonne wurde so lang gezogen, dass es in vielen Zeilen übereinander abgebildet wurde. Oben sind rote Spektralfarben, unten blaue und in der Mitte leuchtet das Spektrum gelb und grün. Die vielen dunklen Linien absorbieren Licht bestimmter Elemente oder Moleküle.

Bildcredit und Bildrechte: Nigel Sharp (NSF), FTS, NSO, KPNO, AURA, NSF

Wir wissen immer noch nicht, warum im Licht der Sonne einige bestimmte Farben fehlen. Das Bild zeigt alle sichtbaren Sonnenfarben. Dazu wurde Sonnenlicht durch ein Prisma-artiges Gerät gelenkt. Das Spektrum wurde mit dem McMath-Pierce-Sonnenteleskop erstellt. Unsere weiß erscheinende Sonne strahlt zwar Licht in fast jeder Farbe ab, doch sie leuchtet im gelbgrünen Bereich am hellsten.

Die dunklen Flecken im oben gezeigten Spektrum stammen von Gas auf oder über der Sonnenoberfläche, das von unten abgestrahltes Sonnenlicht absorbiert. Verschiedene Arten von Gas absorbieren verschiedene Lichtfarben. Daher ist es möglich, die Gase zu bestimmen, aus denen die Sonne besteht. Helium wurde zum Beispiel 1870 erstmals in einem Sonnenspektrum entdeckt und erst später auch hier auf der Erde entdeckt. Inzwischen wurden die meisten Absorptionslinien im Spektrum bestimmt – aber nicht alle.

Zur Originalseite

Das Spektrum der Nova Delphini

Das Bild zeigt Spektren von Sternen, das helle Spektrum in der Mitte gehört zur Nova Delphini 2013. Die anderen Spektren sind blasser. Links oben sind zwei ebenfalls hellere Spektren.

Bildcredit und Bildrechte: Jürg Alean

Ende letzter Woche tauchte im Sternbild Delfin ein neuer Stern auf. Sein Spektrum verriet Forschenden seine wahre Natur. Er ist nun als Nova Delphini bekannt. Das Spektrum im sichtbaren Licht hat fast die maximale Helligkeit. Es befindet sich in der Bildmitte des Sternfeldes, das in der Nacht vom 16. auf 17. August mit Prisma und Teleskop an der Schweizer Sternwarte Bülach fotografiert wurde.

Die dunkelsten Bänder im Spektrum der Nova sind starke Absorptionslinien von Wasserstoffatomen. Die starken Absorptionslinien sind an ihrem roten Ende von hellen Emissionsbändern begrenzt. Das Muster ist die spektrale Signatur von Materie, die von einem kataklystischen Doppelsternsystem ausgestoßen wurde. Es handelt sich um eine klassische Nova.

Die anderen Sterne im Sichtfeld sind blasser. Ihre Spektren sind mit Hipparcos-Katalognummer, Helligkeit in Größenklassen und Spektralklasse markiert. Rechts unten ist zufällig auch die blasse Emissionslinie des planetarischen Nebels NGC 6905 angedeutet.

Zur Originalseite