Fernes Licht brechen

Dieses Bild wurde mit dem Visible MultiObject Spectrograph (VIMOS) aufgenommen, der am Very Large Telescope (VLT) Array in Chile eingesetzt wurde.

Bildcredit und Bildrechte: VIMOS, VLT, ESO

Beschreibung: Im fernen Universum scheint die Zeit langsam zu vergehen. Da zeitdilatiertes Licht zum roten Ende des Spektrums verschoben (rotverschoben) erscheint, können Astronominnen und Astronomen mithilfe der kosmologischen Verlangsamung der Zeit gewaltige Entfernungen im Universum vermessen.

Hier sieht man, wie das Licht von fernen Galaxien in seine Farbbestandteile (Spektren) aufgebrochen wurde. Das erlaubt Forschenden, die kosmologische Rotverschiebung bekannter Spektrallinien zu vermessen. Die Neuheit dieses Bildes besteht darin, dass die Entfernung zu Hunderten Galaxien mit einem einzigen Bild vermessen werden kann. In diesem Fall wurde das Bild mit dem Visible MultiObject Spectrograph (VIMOS) aufgenommen, der am Very Large Telescope (VLT) Array in Chile eingesetzt wurde.

Die Analyse der Verteilung ferner Objekte im Raum bietet Einblicke, wann und wie im frühen Universum Sterne und Galaxien entstanden sind, wie sie Haufen gebildet und sich entwickelt haben.

Zur Originalseite

Mondkorona, Halo und Bögen über Manitoba

Mond mit Korona, 22-Grad-Halo und Bögen über Manitoba in Kanada. Der Mond wirkt, als wäre er von vielen Regenbögen umgeben.

Bildcredit und Bildrechte: Brent Mckean

Kommt ihr pünktlich zur Arbeit, wenn der Mond so aussieht? Der Fotograf machte sich gerade auf den Weg zur Arbeit. Doch Brechung, Reflexion und Beugung des Mondlichtes durch Millionen fallende Eiskristalle verwandelten das vertraute Bild unseres Mondes in eine Menagerie überirdischer Halos und Bögen.

Diese Szenerie wurde aus drei Aufnahmen kombiniert. Sie wurden vor zwei Wochen an einem kalten Wintermorgen im kanadischen Manitoba fotografiert. Die farbigen Ringe sind eine Korona, die durch Quantenbeugung an kleinen Eiskristallen oder Wassertröpfchen ungefähr in Richtung des Mondes entstanden.

Außen herum verlief ein 22-Grad-Halo. Er wurde durch Brechung des Mondlichtes in sechsseitigen zylindrischen Eiskristallen hervorgerufen. An dessen Seiten leuchten Nebenmonde. Sie entstanden durch Lichtbrechung in dünnen, flachen, sechsseitigen Eisplättchen, als sie zu Boden flatterten. Am oberen und unteren Ende des 22-Grad-Halos hängen die obern und unteren Tangentenbögen. Dabei wurde Mondlicht durch fast waagrechte sechseckige Eiszylinder gebrochen.

Nach ein paar Minuten später war der Anblick von Halo und Bögen auf einem Feld neben dem Weg zur Arbeit verschwunden. Der Himmel sah wieder aus wie immer – bis auf einen einzelnen blassen Nebenmond.

Zur Originalseite

Das Sonnenspektrum mit fehlenden Farben

Das Bild in Regenbogenfarben zeigt ein vollständiges, hoch aufgelöstes Sonnenspektrum im sichtbaren Licht. Die Farben von unten nach oben sind blau, grün, gelb und rot.

Bildcredit: Nigel Sharp (NSF), FTS, NSO, KPNO, AURA, NSF

Es ist immer noch nicht bekannt, warum im Sonnenlicht manche Farben fehlen. Hier sind alle sichtbaren Farben der Sonne dargestellt. Dafür wurde Sonnenlicht durch ein prismenartiges Instrument geleitet. Das Spektrum entstand am McMath-Pierce-Sonnenobservatorium. Es zeigt, dass unsere Sonne zwar weiß erscheint, tatsächlich aber Licht in fast jeder Farbe abstrahlt. Im gelbgrünen Spektralbereich leuchtet sie am hellsten.

Die dunklen Streifen im oben gezeigten Spektrum stammen von Gasen in oder über der Sonnenoberfläche, die Sonnenlicht absorbieren, das darunter abgestrahlt wird. Unterschiedliche Gasarten absorbieren verschiedene Farben des Lichtes. Daher kann man aus diesen dunklen Streifen ableiten, aus welchen Gasen die Sonne besteht. Helium zum Beispiel wurde 1870 erstmals in einem Sonnenspektrum entdeckt. Erst danach fand man es auch hier auf der Erde. Inzwischen wurde die Mehrheit der Absorptionslinien im Spektrum bestimmt – aber nicht alle.

Zur Originalseite

Nebenmonde über Alaska

Über den Bergen am Lower Mill Creek in Alaska geht der Mond unter. Er ist von einem Hof umgeben, der links und rechts von Paraselena oder Nebenmonden flankiert sind.

Bildcredit und Bildrechte: Sebastian Saarloos

Was ist mit dem Himmel passiert? Mondlicht beleuchtet die verschneite Szene dieser nächtlichen Himmelslandschaft. Sie wurde im Jänner 2013 am Lower Miller Creek im US-amerikanischen Alaska fotografiert.

Der überbelichtete zunehmende Halbmond leuchtet über dem gebirgigen Horizont im Westen. Er ist von einem eisigen Hof umgeben. Links und rechts ist der Hof von Nebenmonden flankiert. Wissenschaftlich heißt die Lichterscheinung Paraselenae (plural).

Ähnlich wie eine Nebensonne oder ein Parhelion entsteht eine Paraselene, wenn Mondlicht von dünnen, sechseckigen Eiskristallplättchen hoch oben in Zirruswolken gebrochen wird. Die Kristallgeometrie gibt vor, dass Paraselenae mindestens 22 Grad vom Mond entfernt sind. Neben der hellen Mondscheibe wirken Nebenmonde blass. Daher sind sie leichter zu erkennen, wenn der Mond tief steht.

Zur Originalseite

Sternfarben und Pinyon-Kiefer

Vor einem Hintergrund verschwommener bunter Sterne ist die Silhouette eines Nadelzweigs zu sehen.

Bildcredit und Bildrechte: Stan Honda

Der schöne, leuchtende Schmuck dieser Pinyon-Kiefer sind helle Sterne im Sternbild Skorpion und das zarte Leuchten der zentralen Milchstraße. Das flach wirkende Bild ist auf die Nähe fokussiert.

Die Aufnahme wurde im Juni am nördlichen Rand des Grand Canyon auf dem Planeten Erde fotografiert. Es zeigt die Kiefernnadeln auf dem Zweig scharf und die fernen Sterne verschwommen, sodass ihr Licht interessante farbige Scheiben bildet. Die Farbe eines Sterns zeigt seine Temperatur.

Die meisten verschwommenen hellen Sterne im Skorpion haben einen bläulichen Farbton, ihre Oberflächentemperatur ist viel höher als die der Sonne. Der Riesenstern Antares im Zentrum des Skorpions ist kühler, größer und deutlich röter als die Sonne.

Auf scharf gestellten Teleskopansichten wäre die weißliche Scheibe rechts oben sofort erkennbar, es ist der beringte Gasriese Saturn, der Sonnenlicht reflektiert.

Zur Originalseite

Licht von Cygnus A in vielen Wellenlängen

Das Bild der Galaxie Cygnus A im Sternbild Schwan kombiniert Daten in vielen Wellenlängen des elektromagnetischen Spektrums. In der Mitte ist blauer Nebel, nach links und rechts strömen rötliche Wolken aus.

Bildcredit: Röntgen: NASA/CXC/SAO; Optisch: NASA/STScI; Radio: NSF/NRAO/AUI/VLA

Die Astronomie feiert das Internationalen Jahr des Lichtes. Hier seht ihr ein Bild der aktiven Galaxie Cygnus A im ganzen elektromagnetischen Spektrum mit vielen Details.

Das Bild enthält Röntgendaten des Chandra-Observatoriums in der Umlaufbahn. Sie sind blau gefärbt. Offenbar ist Cygnus A eine gewaltige Quelle energiereicher Röntgenstrahlen. Doch bekannt ist sie eher für das energiearme Ende im elektromagnetischen Spektrum.

Cygnus A ist 600 Millionen Lichtjahre entfernt. Für Radioteleskope ist sie eine der hellsten Quellen am Himmel. Cygnus A ist die größte Radiogalaxie in unserer Nähe. Radioemissionen sind im Bild rot gefärbt. Sie breiten sich nach beiden Seiten auf einer gemeinsamen Achse fast 300.000 Lichtjahre weit aus.

Die Emissionen stammen von Strahlen relativistischer Teilchen. Diese Strahlen strömen von einem sehr massereichen Schwarzen Loch im Zentrum aus. Heiße, helle Flecken markieren die Enden der Ströme, die in das kühle, dichte Material in der Umgebung dringen.

Die Daten von Hubble zeigen die Galaxie in sichtbaren Wellenlängen. Sie sind gelb gefärbt. Das Feld im Hintergrund stammt von der Digital Sky Survey (Digitale Himmelsdurchmusterung). Es ergänzt die Ansicht in vielen Wellenlängen.

Zur Originalseite

Nacht und Nebenmond über dem Kitt Peak

Über dem Kitt-Peak-Nationalobservatorium in Tucson, Arizona, leuchtet links neben dem Mond ein sehr heller Nebenmond. Gleich neben dem Mond ist Jupiter zu sehen.

Bildcredit und Bildrechte: Martin Ratcliffe

Diese Nachtszene entstand am frühen Morgen des 14. November. Der abnehmende Mond beleuchtet die Wolken über dem Gipfel mit den Kuppeln. Sie gehören zum Kitt-Peak-Nationalobservatorium in Tucson, Arizona. Links neben dem überbelichteten Mond gleißt der helle Jupiter. Der Streifen rechts neben dem Mond ist ein Blendfleck der Kamera.

Was in der Bildmitte hell strahlt, ist keine explodierende Feuerkugel, sondern ein erstaunlich heller Nebenmond. Er leuchtete vom Straßenrand aus direkt über dem WIYN-Teleskop am Kitt Peak. Ein Nebenmond entsteht ähnlich wie eine Nebensonne, aber durch Mondlicht. Es wird in dünnen, sechseckigen Eiskristallplättchen gebrochen, die in hohen Federwolken schweben.

Die Kristallgeometrie gibt vor, dass Nebenmonde 22 Grad oder mehr vom Mond entfernt sind. Wenn man Nebenmonde mit dem hellen Mond vergleicht, wirken sie eher blass. Sie sind leichter erkennbar, wenn der Mond tief steht. Nach Aufnahme des Bildes verblasste der helle Nebenmond 10 Minuten später.

Zur Originalseite

Schillernder Wolkenrand über Colorado

Vor einem dunklen Hintergrund verläuft oben waagrecht eine Wolkenschicht, die links unten bunt schillert. Rechts verläuft senkrecht ein Stück Kondensstreifen eines Flugzeugs.

Bildcredit und Bildrechte: Phil Plait (Bad Astronomy Blog, Slate)

Manchmal geht die Beobachtung einer Finsternis auf interessante Weise schief. Letzten Donnerstag beobachtete und fotografierte ein bekannter Astronomieblogger die partielle Sonnenfinsternis. Dabei litt wegen der langen Zeitabschnitte, in denen Wolken die Sonne verdeckten. Doch eine Wolke in der Nähe zeigte plötzlich einen seltenen Effekt: Sie begann zu schillern.

Irisieren ist ein bekannter Effekt bei einem Hof um die Sonne. Er entsteht durch die Brechung von Sonnenlicht in einer dünnen Schicht aus fast gleich großen Wassertröpfchen. Die einzelnen Farben des Sonnenlichts werden in verschiedenen Winkeln abgelenkt. Sie gelangen daher aus leicht unterschiedlichen Richtungen zur Beobachterin.

Die Schau war ziemlich hell und zeigte ungewöhnlich viele Farben. Rechts seht ihr den Kondensstreifen eines Flugzeugs.

Zur Originalseite