Adler-Polarlicht über Norwegen

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Bjørn Jørgensen

Beschreibung: Was ist das am Himmel? Ein Polarlicht. Im Jahr 2012 ereignete sich fünf Tage vor Aufnahme dieses Bildes ein großer koronaler Massenauswurf auf unserer Sonne und schleuderte eine Wolke schneller Elektronen, Protonen und Ionen in Richtung Erde. Obwohl ein Großteil dieser Wolke über der Erde vorbeizog, traf ein Teil davon die Magnetosphäre und führte zu spektakulären Polarlichtern, die in hohen nördlichen Breiten zu sehen waren.

Hier ist eine besonders fotogene Polarlicht-Korona zu sehen, die über dem Grotfjord in Norwegen fotografiert wurde. Manche erkennen im schimmernden grünen Licht des rekombinierenden Luftsauerstoffs einen riesigen Adler. Wenn Sie etwas anderes darin sehen, teilen Sie uns das gerne mit! Zwar hat die Sonnenaktivität derzeit fast ein Minimum erreicht, trotzdem treffen weiterhin Ströme des Sonnenwindes auf die Erde und erzeugen eindrucksvolle Polarlichter. Erst letzte Woche waren welche zu sehen.

Zur Originalseite

Drachenpolarlicht über Island

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Jingyi Zhang und Wang Zheng

Beschreibung: Haben Sie schon einmal einen Drachen am Himmel gesehen? Es gibt zwar keine echten fliegenden Drachen, doch am Himmel über Island entwickelte sich zu Beginn dieses Monats ein riesiges drachenförmiges Polarlicht. Dieses Polarlicht entstand durch ein Loch in der Korona der Sonne, das einen Sonnenwind aus geladenen Teilchen ausstieß, der über das wechselhafte interplanetare Magnetfeld zur Magnetosphäre der Erde gelangte. Einige dieser Teilchen trafen auf die Erdatmosphäre und regten die Atome an, die daraufhin Licht abstrahlten: Polarlicht.

Die kultig Schau war so spannend, dass die Mutter des Fotografen hinauslief, um sie zu sehen, und im Vordergrund fotografiert wurde. Bisher erschienen im Februar auf der Sonne keine Sonnenflecken, daher kamen die Tage der malerischen Polarlichtaktivität dieses Monats etwas überraschend.

Zur Originalseite

Fliegende Untertasse stürzt in der Wüste von Utah ab

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: USAF 388th Range Sqd., Genesis Mission, NASA

Beschreibung: Eine fliegende Untertasse aus dem Weltraum machte in der Wüste von Utah eine Bruchlandung, nachdem sie mit Radar aufgespürt und von Hubschraubern verfolgt worden war. Das Jahr war 2004, und es waren keine Außerirdischen beteiligt.

Die hier fotografierte Untertasse war die Genesis-Probenrückholkapsel, Teil der von Menschen gebauten robotischen Raumsonde Genesis, die 2001 von der NASA gestartet worden war, um die Sonne zu untersuchen. Die unerwartet harte Landung mit mehr als 300 km/h trat auf, weil sich die Fallschirme nicht wie geplant öffneten.

Die Mission Genesis war um die Sonne gekreist, um Sonnenwindpartikel zu sammeln, die normalerweise vom Erdmagnetfeld abgelenkt werden. Trotz der Bruchlandung waren viele Rückkehrproben in ausreichend gutem Zustand für eine Analyse geblieben. Zu den bisherigen Entdeckungen im Zusammenhang mit Genesis gehören neue Details zur Zusammensetzung der Sonne sowie zur Schwankung der Verteilung einiger Elementarten im Sonnensystem. Diese Ergebnisse lieferten faszinierende Detailhinweise dazu, wie Sonne und Planeten vor Milliarden Jahren entstanden sind.

Mehr zum Absturz von Genesis
Zur Originalseite

Polarlichter und Jupiters Magnetosphäre

Die Illustration zeigt den Planeten Jupiter, umgeben von einem Magnetfeld. Rund um den Planeten sind rosarote leuchtende Hüllen. Weiter außen leuchten dunklere blaue Hüllen, sie werden vom Sonnenwind aus dem Sonnensystem hinausgedrängt.

Illustrationscredit: JAXA Credit Bildeinschub: NASA, ESA, Chandra, Hubble

Jupiter hat Polarlichter. Sowohl auf der Erde als auch auf dem größten Planeten im Sonnensystem wird das Magnetfeld komprimiert, wenn ein Schwall geladener Teilchen von der Sonne einströmt. Diese magnetische Kompression leitet geladene Teilchen zu Jupiters Polen und in die Atmosphäre. Dort werden Elektronen vorübergehend aus dem Atmosphärengas ausgeschlagen. Wenn die Ionen in der Atmosphäre mit Elektronen rekombinieren, leuchten Polarlichter auf.

Diese Illustration zeigt Jupiters aktive prachtvolle Magnetosphäre. Der Bildeinschub wurde letzten Monat veröffentlicht. Er wurde mit dem Röntgenobservatorium Chandra im Erdorbit aufgenommen. Die Chandra-Aufnahme wurde über ein Bild in sichtbarem Licht gelegt, das zu einer anderen Zeit vom Weltraumteleskop Hubble fotografiert wurde.

Das kleine Bild zeigt unerwartet starkes Röntgenlicht, das von Jupiters Polarlichtern abgestrahlt wird. Das Röntgenlicht ist hier in Falschfarbenviolett abgebildet. Das Polarlicht auf Jupiter war im Oktober 2011 einige Tage nach einem mächtigen koronalen Massenauswurf auf der Sonne zu sehen.

Zur Originalseite

Der komplexe Ionenschweif des Kometen Lovejoy

Links oben ist die helle, grüne Koma des Kometen Lovejoy zu sehen. Nach links unten fächert sich sein Schweif in vielen Fasern auf. Im Hintergrund sind die Sterne im Sternbild Stier.

Bildcredit und Bildrechte: Velimir Popov und Emil Ivanov (IRIDA-Observatorium)

Wie entsteht die Struktur im Schweif des Kometen Lovejoy? Komet C/2014 Q2 (Lovejoy) ist derzeit mit bloßem Auge sichtbar. Er hat fast seine größte Helligkeit erreicht und besitzt einen detailreichen Ionenschweif. Der Name deutet schon an, dass der Ionenschweif aus ionisiertem Gas besteht. Es wird vom Ultraviolettlicht der Sonne angeregt und vom Sonnenwind hinausgetrieben.

Das komplexe Magnetfeld der Sonne verändert sich ständig. Es strukturiert und verformt den Sonnenwind. Der unbeständige Sonnenwind erklärt in Kombination mit unregelmäßigen Gasstrahlen, die vom Kometenkern ausströmen, die komplexe Struktur im Schweif. Die Struktur im Schweif des Kometen Lovejoy folgt dem Wind, der sich von der Sonne wegbewegt. Er ändert im Lauf der Zeit sogar die gewellte Erscheinung.

Die blaue Farbe des Ionenschweifes entsteht durch Kohlenmonoxidmoleküle, die rekombinieren. Die grüne Farbe der Koma um den Kern des Kometen stammt vorwiegend vom geringen Anteil an zweiatomigem Kohlenstoff, der sich mit freien Elektronen verbindet.

Das Mosaik entstand aus drei Bildern, die vor neun Tagen am IRIDA-Observatorium in Bulgarien fotografiert wurden. Komet Lovejoy kam vor zwei Wochen auf seiner Bahn der Erde am nächsten. In zwei Wochen erreicht er sein Perihel, das ist die größte Nähe zur Sonne. Dann verblasst der Komet und wandert ins äußere Sonnensystem hinaus. Schon in etwa 8000 Jahren kehrt er zurück.

Zur Originalseite

Alaska-Polarlichtserie

Die Bildserie aus grünen und purpurfarbenen Polarlichtern zeigen die Veränderungen in einem Zeitraum von 30 Minuten. Die Bilder entstanden in Ester in der Nähe von Fairbanks in Alaska.

Bildcredit und Bildrechte: LeRoy Zimmerman (TWAN)

Ein außergewöhnlich intensives Polarlichtband überflutete am 7. Dezember die nördliche Nacht mit schimmernden Farben. Die prachtvolle Bildserie entstand mit Kamera und Stativ unter dem kalten, klaren Himmel von Ester. Es liegt in der Nähe von Fairbanks in Alaska. Die Bildfolge entstand von links nach rechts. Sie zeigt die Veränderungen der tanzenden Nordlichtschleier in einem Zeitraum von etwa 30 Minuten.

Die Polarlichter reichten höher als 100 Kilometer. Das Band wölbt sich über den Zenit. Die Bildfelder reichen 150 Grad hoch. Sie zeigen vom unteren bis zum oberen Rand etwa 500 Kilometer des Polarlichtes. Die Polarlichtaktivität wurde von einem moderaten geomagnetischen Sturm ausgelöst. Dabei stieß ein superschneller Sonnenwindstrom auf das Magnetfeld des Planeten Erde.

Zur Originalseite

Aktive Sonne während der totalen Sonnenfinsternis

Mitten im Bild ist eine gelbe Kugel mit weißen und dunklen Strukturen, sie ist von weißen Schlieren umgeben, die in einen dunklen Kreis verlaufen. Außerhalb des dunklen Kreises sind lange Streifen und Strahlen der Sonnenkorona.

Bildcredit und Bildrechte: D. Seaton (ROB) und J. M. Pasachoff (Williams-College Sonnenfinsternis-Expedition), NRL, ESA, NASA, NatGeo

Manchmal bietet eine totale Sonnenfinsternis eine Gelegenheit für ein besonderes Bild. Die Sonnenfinsternis zu Beginn des Monats wurde von mehreren Observatorien aufgenommen. Das innerste Bild zeigt die Sonne in Ultraviolettlicht. Es wurde mit dem Instrument SWAP aufgenommen. SWAP befindet an Bord der Mission Proba-2 in einem niedrigen sonnensynchronen Erdorbit.

Das Bild ist von einem Finsternisbild umgeben, das auf der Erde fotografiert und in Blau wiedergegebenen wurde. Es wurde in Gabun fotografiert. Weiter außen ist eine kreisrund abgedeckte Region, mit der die Sonnenmitte künstlich abgedunkelt wird. Sie wurde vom Instrument LASCO an Bord der Raumsonde SOHO in einem Sonnenorbit aufgenommen. Das äußerste Bild zeigt die ausfließende Sonnenkorona. Die Aufnahme entstand zehn Minuten nach der Finsternis mit LASCO.

In den letzten Wochen zeigte unsere Sonne ungewöhnlich viele Sonnenflecken, koronale Massenauswürfe und Sonneneruptionen. Diese Aktivität war zu erwarten, da die Sonnenaktivität gerade ein Maximum erreicht. Das ist der aktivste Teil ihres 11-jährigen Sonnenzyklus. Das Ergebnisbild ist eine interessante Montage mehrerer Sonnenschichten. Man kann damit aktive Regionen in oder nahe der Sonnenoberfläche besser mit den ausströmenden Strahlen in der Sonnenkorona vergleichen.

Zur Originalseite

Der breite Schweif von PanSTARRS

Der Schweif des Kometen PanSTARRS ist stark gefächert. Das überlagerte Bild zeigt die Struktur des Schweifes.

Bildcredit und Bildcredit: Lorenzo ComolliModell-Einblendung: Marco Fulle (INAF)

Für Beobachter auf der Nordhalbkugel hängt der Komet PanSTARRS C/2011 L4 in den nächsten Tagen nach Sonnenuntergang, aber vor Mondaufgang immer noch im Westen über dem Horizont. Unsere Perspektive auf dem Planeten Erde bietet weiterhin eine gute Sicht auf den breiten Staubschweif des Kometen.

Diese Langzeitbelichtung vom 21. März folgte dem Kometen. Sie wurde kontrastverstärkt. Dadurch zeigt das Bild die auffallenden zarten Streifen im Schweif des Kometen PanSTARRS. Schiebt den Mauspfeil über das Bild oder klickt hier, dann wird der Staubschweif mit einem Modellgeflecht von Isochronen und Isodynen überlagert. Isochronen (lange gestrichelte Linien) zeigen die Lage von Staubkörnchen, die sich gleichzeitig mit der Geschwindigkeit Null vom Kometenkern lösen.

Die aufeinanderfolgenden isochronen Linien liegen einen Tag auseinander und beginnen unten, zehn Tage vor dem Periheldurchgang des Kometen am 10. März. Isodynen (durchgezogene Linien) zeigen die Lage von Staubkörnchen gleicher Größe, die sich ebenfalls mit der Geschwindigkeit Null lösen.

Staubkörnchen, die einen Mikrometer groß sind, sind entlang der oberen Isodyne verteilt. Die Körnchengröße wächst entlang der Isodynen fast parallel zur Kometenbahn (kurz gestrichelte Linie durch den Kern) gegen den Uhrzeigersinn auf 500 Mikrometer große Körnchen. Im Modell wird angenommen, dass die Kräfte, die auf die Staubkörnchen wirken, Gravitation und Strahlungsdruck des Sonnenlichts sind. Die periodische Streifenbildung im Schweif des Kometen PanSTARRS scheint den isochronen Modelllinien zu folgen.

Abbildungsmaßstab: Am 21. März war Komet PanSTARRS etwa 180 Millionen Kilometer entfernt. In dieser Entfernung ist dieses Bild fast 4 Millionen Kilometer groß.

Lesetipp: „Mir kommen keine Weiber mehr ins All“Walentina Tereschkowas Weg ins All; von Maria Pflug-Hofmayr

Zur Originalseite