Polarlicht-Zeitraffer über den italienischen Alpen

Videocredit und -rechte: Cristian Bigontina

Habt ihr letzte Nacht das Polarlicht gesehen? Diese Frage beschäftigte vor ein paar Tagen viele Menschen weltweit. Denn ungewöhnlich weit von den Polen der Erde entfernt war ein mächtiger Polarlichtsturm zu sehen.

Der Auslöser dafür war eine riesige Sonnenfackel der X-Klasse. Diese schleuderte am Dienstag energiereiche Elektronen und Protonen ins Sonnensystem. Diese traten über das Magnetfeld der Erde mit dem Planeten in Verbindung. Die Teilchen trafen hoch in der Erdatmosphäre auf Sauerstoffatome. Das ganze Bild ist von ihrem roten Leuchten durchflutet. Dabei tanzten senkrechte Streifen.

Das Zeitraffervideo zeigt eine Stunde komprimiert. Die Aussicht reicht von Cortina d’Ampezzo über die Gipfel der Alpen in Norditalien. Die Sterne unserer Milchstraße sprenkeln den Hintergrund. Im Vordergrund ziehen Flugzeuge und Satelliten ihre Streifen. Die aktuelle hohe Aktivität unserer Sonne liefert wahrscheinlich noch etwa ein Jahr lang malerische Polarlichter auf der Erde.

Galerie: Weltweite Polarlichter vom 10. auf 11. Oktober 2024

Zur Originalseite

Sonnenfackel: Die berühmte aktive Region kehrt zurück

Videocredit: NASA, Solar Dynamics Observatory

Es ist zurück. Die berühmte aktive Region auf der Sonne, die Polarlichter hervorrief, die zu Beginn des Monats auf der ganzen Erde zu sehen waren, überdauerte ihre Rotation um die erdabgewandte Seite der Sonne und ist zurück. Gestern tauchte die Region, die als AR 3664 bezeichnet wurde, langsam wieder auf der erdzugewandten Seite auf. Sie schleuderte eine weitere gewaltige Sonnenfackel aus, auch diese zählt zur energiereichen Klasse X.

Das Video zeigt die auftauchende aktive Region links unten. Das Solar Dynamics Observatory der NASA im Erdorbit nahm sie gestern in Ultraviolettlicht auf. Das Video zeigt in Zeitraffer, wie die Sonne im Lauf von 24 Stunden rotiert. Die Region wurde links unten bei etwa 2 Sekunden markiert. Dort bricht die mächtige Sonnenfackel aus.

Voraussichtlich treffen keine energiereichen Teilchen dieser Fackel und dem damit zusammenhängenden KMA die Erde direkt, um eindrucksvolle Polarlichter auszulösen, aber Forschende beobachten diese ungewöhnliche aktive Region die nächsten zwei Wochen sehr genau von der Erde aus, um zu sehen, was sich entwickelt.

Zur Originalseite

Eine gewaltige Tsunami-Stoßwelle auf der Sonne

Diese tsunami-ähnliche Stoßwelle auf der Sonne, die von der Aktiven Region AR 10930 ausging, ist als  Moreton-Welle bekannt.

Bildcredit: NSO/AURA/NSF und das USAF-Forschungslabor

So große Tsunamis gibt es nicht auf der Erde. 2006 erzeugte eine große Sonneneruption aus einem Sonnenfleck von der Größe der Erde eine tsunamiähnliche Stoßwelle, die sogar für die Sonne spektakulär war.

Das Optische Sonnenüberwachungs-Netzwerk (Optical Solar Patrol Network, OSPAN) in New Mexico (USA) erfasste diesen Tsunami, der von der Aktiven Region AR 10930 auswärts wanderte. Die Stoßwelle ist in der Wissenschaft als Moreton-Welle bekannt. Sie komprimierte und erhitzte Gase, darunter den Wasserstoff in der Photosphäre der Sonne, und verursachte ein kurzzeitiges helleres Leuchten. Dieses Bild wurde in einer sehr spezifischen roten Farbe aufgenommen, die ausschließlich von Wasserstoff abgestrahlt wird.

Der rasende Tsunami löschte einige aktive Filamente auf der Sonne aus, manche davon entstanden später neu. Der Sonnen-Tsunami breitete sich mit fast einer Million Kilometer pro Stunde aus und umkreiste die gesamte Sonne in wenigen Minuten.

Zur Originalseite

Ein Filament schießt aus der Sonne


Videocredit und -rechte: Stéphane Poirier

Beschreibung: Warum entweicht manchmal ein Teil der Sonnenatmosphäre ins All? Der Grund dafür liegt in den veränderlichen Magnetfeldern, die durch die Sonnenoberfläche verlaufen. In Regionen mit starkem Oberflächenmagnetismus, sogenannten aktiven Regionen, sind häufig dunkle Sonnenflecken anzutreffen.

Aktive Regionen können geladenes Gas entlang von gewölbten oder ausladenden Magnetfeldern kanalisieren. Dieses Gas fällt manchmal zurück, manchmal entweicht es, und manchmal trifft es sogar unsere Erde.

Dieses Zeitraffervideo zeigt die Entwicklung im Laufe einer Stunde, es wurde mit einem kleinen Teleskop in Frankreich aufgenommen und zeigt ein ausbrechendes Filament, das Ende letzten Monats von der Sonne aufstieg. Dieses Filament ist riesig: Zum Vergleich ist links oben die Größe der Erde abgebildet.

Kurz nachdem das Filament aufstieg, stieß die Sonne eine mächtige Fackel der X-Klasse aus, während ein gewaltiger Sonnen-Tsunami die Oberfläche erschütterte. Das Ergebnis war eine Wolke geladener Teilchen, die durch unser Sonnensystem rasten, unsere Erde aber großteils verfehlten – zumindest diesmal. Dennoch traf eine ausreichende Menge Sonnenplasma auf das Erdmagnetfeld, um ein paar blasse Polarlichter hervorzurufen.

Zur Originalseite

Ausbruch einer Sonnenprotuberanz von SDO


Videocredit und -rechte: NASA/Goddard/SDO AIA Team

Beschreibung: Eine der spektakulärsten Sonnenansichten ist eine ausbrechende Protuberanz. 2011 filmte die Raumsonde Solar Dynamics Observatory der NASA im Sonnenorbit eine eindruckvolle große Protuberanz, die auf der Oberfläche ausbrach. Die dramatische Explosion in diesem Zeitraffervideo wurde in Ultraviolettlicht gefilmt. Das Video komprimiert 90 Minuten, wobei alle 24 Sekunden ein neues Bild aufgenommen wurde.

Die Protuberanz ist riesig – unter den fließenden Schleier aus heißem Gas würde die ganze Erde leicht hineinpassen. Eine Sonnenprotuberanz wird vom Magnetfeld der Sonne kanalisiert und manchmal über der Sonnenoberfläche gehalten. Eine ruhige Protuberanz bleibt typischerweise etwa einen Monat bestehen und kann als koronaler Massenauswurf (KMA) ausbrechen und heißes Gas ins Sonnensystem schleudern. Der Energie-Mechanismus, der eine Sonnenprotuberanz erzeugt, wird noch erforscht.

Wenn unsere Sonne das aktuelle Sonnenaktivitätsminimum passiert hat, treten in den nächsten Jahren Sonnenaktivitäten wie ausbrechende Protuberanzen voraussichtlich wieder häufiger auf.

Zur Originalseite

Eine mächtige Sonneneruption


Videocredit: SOHO-Arbeitsgemeinschaft, LASCO, ESA, NASA

Beschreibung: Es war eine der stärksten Sonneneruptionen der Geschichte. Sie ereignete sich 2003 und war im gesamten elektromagnetischen Spektrum zu beobachten. Im Röntgenspektralbereich wurde die Sonne für kurze Zeit mehr als 100 Mal heller als sonst. Am Tag nach dieser gewaltigen X-17-Sonneneruption – und einem anschließenden koronalen Massenauswurf (KMA) – trafen die energiereichen Teilchen, die bei diesen Explosionen ausgestoßen wurden, auf die Erde, riefen Polarlichter hervor und beeinflussten Satelliten. Die Raumsonde SOHO, welche diese Bilder fotografierte, wurde in einen schildkrötenartigen Sicherheitsmodus versetzt, um Schäden durch diesen und nachfolgende Teilchenstürme von der Sonne zu vermeiden.

In diesem Zeitrafferfilm wurden Ereignisse, die vier Stunden dauerten, auf 10 Sekunden komprimiert. Der KMA, der um die zentrale Sonnenblende herum sichtbar ist, tritt etwa drei Viertel der Videolänge auf, die Bilder zum Ende hin werden immer stärker verrauscht, als Protonen von den Explosionen auf SOHOs LASCO-Detektor trafen.

An einem Tag im Jahr 1859 führten die Auswirkungen eines noch mächtigeren Sonnensturms dazu, dass Telegrafenmasten auf der Erde Funken sprühten, was als Carrington-Ereignis in die Geschichte einging. Mächtige Sonnenstürme wie dieser können den Himmel mit schönen Polarlichtern bedecken, aber sie stellen auch eine echte Gefahr dar, da sie Satelliten und sogar Stromnetze auf der Erde beschädigen können.

Zur Originalseite

Koronaler Regen auf der Sonne


Videocredit: Solar Dynamics Observatory, SVS, GSFC, NASA; Musik: „Thunderbolt“ von Lars Leonhard

Beschreibung: Regnet es auf der Sonne? Ja, doch der Niederschlag ist kein Wasser, sondern extrem heißes Plasma. Ein solcher Regen ereignete sich Mitte Juli 2012 nach einer Eruption auf der Sonne, bei der sowohl ein koronaler Massenauswurf als auch eine mittelmäßige Sonneneruption auftraten.

Danach trat jedoch etwas eher Ungewöhnliches auf: In der nahen Sonnenkorona wurde Plasma fotografiert, das abkühlte und zurückfiel. Dieses Phänomen ist als koronaler Regen bekannt. Wegen ihrer elektrischen Ladung wurden Elektronen, Protonen und Ionen im Regen entlang bestehender Magnetschleifen grazil zur Sonnenoberfläche gelenkt. Die Szene wirkt wie ein surrealer, dreidimensionaler quellenloser Wasserfall.

Das überraschend ruhige Schauspiel ist in Ultraviolettlicht abgebildet und zeigt Materie, die bei einer Temperatur von etwa 50.000 Kelvin leuchtet. Jede Sekunde dieses Zeitraffervideos dauert in Echtzeit etwa 6 Minuten, somit dauerte der ganze koronale Regenschauer etwa 10 Stunden. Aktuelle Beobachtungen zeigen, dass so ein koronaler Regen auch in kleineren Schleifen auftreten und ganze 30 Stunden dauern kann.

Zur Originalseite

Die losgelassene Sonne: Riesenfackel in Ultraviolett


Videocredit: NASA GSFC’s Scientific Visualization Studio, Solar Dynamics Obs.

Beschreibung: Einer der eindrucksvollsten Sonnenanblicke ist eine ausbrechende Eruption. Im Juni 2011 entließ die Sonne eine einigermaßen eindrucksvolle, mittelgroße Sonnenfackel, während durch die Rotation aktive Sonnenfleckenregionen zum Sonnenrand gelangten. Auf diese Fackel folgte jedoch ein gewaltiger Strom aus magnetisiertem Plasma. Die Aufnahme in extremem Ultraviolettlicht vom Ausbruch dieser Riesenfackel, die am Sonnenrand zu sehen ist, stammt vom Solar Dynamics Observatory der NASA.

Dieses Zeitraffervideo zeigt, wie bei dem stundenlangen Ereignis dunkles kühleres Plasma auf einen großen Bereich der Sonnenoberfläche herabregnet und sich entlang der unsichtbaren Magnetfeldlinien wölbt. In Verbindung damit wurde ein koronaler Massenauswurf – eine massereiche Wolke energiereicher Teilchen – Richtung Erde geschleudert, wo er zu einem Streifschuss des Erdmagnetfeldes führte.

Zur Originalseite