Schatten bei Sonnenaufgang am Himmel

Ein Kirchturm in der katalanischen Stadt Vic im spanischen Barcelona scheint zu leuchten. Auch die Strahlen am Himmel scheinen von dem Turm auszuströmen. Es sind Strahlenbüschel, die Schatten von Wolken, die von der Sonne an den Himmel geworfen werden.

Bildcredit und Bildrechte: Emili Vilamala

Am 22. September um 12:44 UTC ist die diesjährige September-Tagundnachtgleiche: der maßgebliche Zeitpunkt, zu dem die Sonne auf ihrer jährlichen Reise durch den Himmel der Erde den Himmelsäquator in Richtung Süden überquert. Tag und Nacht sind dann auf dem gesamten Globus nahezu gleich lang. Auf der Nordhalbkugel unseres schönen Planeten beginnt der Herbst und auf der Südhalbkugel der Frühling.

Falls ihr den astronomischen Wechsel der Jahreszeiten bei Sonnenaufgang feiert, könnt ihr nach Dämmerungsstrahlen Ausschau halten. Dabei handelt es sich um Schatten, die von Wolken geworfen werden, und die bei jedem Sonnenaufgang (oder Sonnenuntergang) am Dämmerungshimmel eindrucksvoll in Erscheinung treten können. Die parallelen Wolkenschatten scheinen zur Tagundnachtgleiche nicht nur perspektivisch auf die aufgehende Sonne sondern auch auf einen Ort genau im Osten am Horizont zu zeigen.

In dieser spektakulären Sonnenaufgangslandschaft, die Anfang Juni aufgenommen wurde, scheinen die parallelen Schatten und Dämmerungsstrahlen auf einen weiter nördlichen Sonnenaufgang am Osthorizont zu weisen. Das gut komponierte Foto zeigt die aufgehende Sonne direkt hinter dem Glockenturm einer Kirche in der Stadt Vic in der Provinz Barcelona im spanischen Katalonien.

Zur Originalseite

Eine dreieckige Protuberanz schwebt über der Sonne

Über der Sonnenoberfläche, die an einen langhaarigen Teppich erinnert, schwebt eine dreieckige Sonnenprotuberanz.

Bildcredit und Bildrechte: Andrea Vanoni

Warum schwebt da ein Dreieck über der Sonne? Ihr Aussehen mag zwar ungewöhnlich sein, die Erscheinung an sich ist es aber nicht: Es handelt sich um einen Teil einer sich entwickelnden Sonnenprotuberanz. Magnetfeldschlaufen, die die Oberfläche der Sonne durchbrechen, kanalisieren den Strom geladener Teilchen und halten solche gasartigen Strukturen manchmal monatelang in der Schwebe. Eine Protuberanz leuchtet hell, da sie besonders heißes, dichtes oder undurchsichtiges Sonnenplasma enthält.

Die ungewöhnliche dreieckige Struktur bildete sich letzte Woche. Diese markante Protuberanz war größer als unsere Erde und wurde von einer Reihe von Sonnenfotograf*innen aufgenommen. Auch das Solar Dynamic Observatory der NASA hat dokumentiert, wie sie sich innerhalb eines Tages bildete und explosionsartig auflöste.

Das hier gezeigte Bild wurde im roten Licht aufgenommen, das von leuchtendem Wasserstoff ausgestrahlt wird. Sogenannte Fibrillen bedecken die Chromosphäre der Sonne, während der Himmel im Hintergrund so dunkel ist, dass keine Sterne zu sehen sind. Die Oberfläche unserer Sonne war in diesem Jahr recht aktiv.

Zur Originalseite

SDO zeigt den Ausbruch einer Protuberanz

Videocredit: NASA/Goddard/SDO-AIA-Team

Eruptive Protuberanzen gehören zu den spektakulärsten Erscheinungen auf der Sonne. Im Jahr 2011 nahm die NASA-Raumsonde Solar Dynamics Observatory eine beeindruckend große Protuberanz auf, die aus der Oberfläche herausbrach. Die dramatische Explosion wurde im ultravioletten Licht in dem hier gezeigten Zeitraffervideo festgehalten, für das über einen einen Zeitraum 90 Minuten alle 24 Sekunden ein neues Bild aufgenommen wurde.

Die Dimensionen der Protuberanz sind gewaltig – die gesamte Erde würde problemlos unter den fließenden Vorhang aus heißem Gas passen. Eine Sonnenprotuberanz wird durch das Magnetfeld der Sonne kanalisiert und kann sich auch länger über der Sonnenoberfläche halten. Eine ruhende Protuberanz kann bis zu einem Monat bestehen. Sie kann aber auch in einem koronalen Massenauswurf (engl. Coronal Mass Ejection, kurz CME) ausbrechen, der heißes Gas in das Sonnensystem schleudert.

Der Mechanismus, der eine Sonnenprotuberanz erzeugt, ist nach wie vor ein aktuelles Forschungsthema. Unsere Sonne ist zur Zeit sehr aktiv, da sie sich erneut in der Nähe ihres Aktivitätsmaximums befindet. Das schlägt sich in zahlreichen Protuberanzen und CMEs nieder, von denen einer in der vergangenen Woche zu malerischen Polarlichtern führte.

Zur Originalseite

Gaia: Hier kommt die Sonne

Bildcredit: Galaxien-Illustration: N. Risinger (skysurvey.org); Sterndaten: Gaia Mission, ESA, A. S. Sellés (U. Heidelberg) et al.

Wie würde es aussehen, von außerhalb unserer Galaxie nach Hause zurückzukehren? Daten der robotischen ESA-Mission Gaia sollen zwar größere Fragen beantworten, doch sie bieten auch eine einzigartige Perspektive auf den Platz der Menschheit im Universum.

Gaias Orbit um die Sonne liegt in der Nähe der Erde. Das Weltraumteleskop kann Sternpositionen so präzise bestimmen, dass es selbst kleine Verschiebungen misst, die durch die Änderung des Blickwinkels im Laufe eines Jahres hervorgerufen werden. Diese Verschiebungen sind entsprechend kleiner für weiter entfernte Sterne. Damit lässt sich die Entfernung zu den Sternen bestimmen.

Im ersten Teil des Videos verwandelt sich eine Darstellung der Milchstraße rasch in eine dreidimensionale Visualisierung von Gaia Sterndaten. Bei einigen bekannten Sternen sind ihre Namen angegeben, andere Sterne sind mit Nummern aus einem Gaia-Katalog bezeichnet. Schließlich kommen wir in unserer stellaren Nachbarschaft an, wo viele Sterne von Gaia beobachtet wurden. Bald darauf erreichen wir unseren Heimatstern die Sonne. Am Ende des Videos wird das reflektierte Licht des dritten Planeten der Sonne sichtbar: Planet Erde.

Zur Originalseite

Sonnentanz

Videocredit: NASA, SDO; Bearbeitung: Alan Watson via Helioviewer

Manchmal scheint die Oberfläche unserer Sonne zu tanzen.

Mitte 2012 nahm die NASA-Raumsonde Solar Dynamics Observatory, die sich im Orbit um die Sonne befindet, eine eindrucksvolle Protuberanz auf. Sie schien einen Hechtsprung zu performen wie ein akrobatischer Tänzer. Die dramatische Explosion wurde im ultravioletten Licht aufgenommen und das hier gezeigte Zeitraffer-Video spielte sich in Wirklichkeit über drei Stunden ab.

Das Schleifen werfende Magnetfeld lenkte den Fluss des heißen Plasmas auf die Sonne.

Die Größe der tanzenden Protuberanz ist gewaltig – die ganze Erde würde bequem unter den fließenden Bogen aus heißem Gas passen. In der Ruhephase dauert eine Protuberanz typischerweise etwa einen Monat. Danach könnte sie in einem koronalen Massenauswurf (engl. Coronal Mass Ejection, CME) enden und heißes Gas ins Sonnensystem ausstoßen.

Der Energiemechanismus, der solche Sonnenprotuberanzen verursacht, ist immer noch Gegenstand der Forschung. Wie 2012 ist die Sonnenoberfläche auch dieses Jahr ziemlich aktiv und bringt zahlreiche Filamente und Protuberanzen hervor.

Zur Originalseite

Protuberanzen und Filamente auf der aktiven Sonne

Die orangefarbene Sonne hat einen sehr hellen Rand und ist von einem türisblauen Hintergrund umgeben.

Bildcredit und Bildrechte: Steen Søndergaard

Dieses kolorierte und geschärfte Bild der Sonne besteht aus Einzelbildern, die am 15. Mai im Licht von leuchtendem Wasserstoff in der Chromosphäre der Sonne aufgenommen wurden.

Wir nähern uns dem Maximum des 25. Sonnenfleckenzyklus und sehen daher jede Menge aktive Regionen und schlangenartig gewundene Filamente, die sich über die Oberfläche der aktiven Sonne verteilen. Die Plasmafilamente sind in den starken Magnetfeldern der aktiven Regionen verankert und schweben als helle Protuberanzen über dem Sonnenrand.

Die großen Protuberanzen, die auf etwa 4 Uhr und 9 Uhr am Sonnenrand zu sehen sind, sind Bögen, die sich im Anschluss an die zwei starken Helligkeitsausbrüche der Klasse X gebildet haben, die beide an diesem Tag stattfanden. Die Protuberanz bei 4 Uhr gehört zu der riesengroßen aktiven Region AR 3664, die dabei ist, am Sonnenrand zu verschwinden.

Zur Originalseite

Wie man ein Licht am Himmel bestimmt

Grafik zur Bestimmung von Lichtern am Himmel

Illustrationscredit und Bildrechte: HK (The League of Lost Causes)

Was ist dieses Licht am Himmel? Vielleicht ist das eine der häufigsten Fragen, die in der Menschheit gestellt werden. Die Antwort kann oft mit wenigen schnellen Beobachtungen gegeben werden, die typischerweise zuerst abgefragt werden, wenn sie in Planetarien und Sternwarten an Fachleute gerichtet werden, z.B.:

Blickt es und bewegt es sich? Falls ja – und insbesondere, wenn die Beobachtung nahe einer Großstadt gemacht wurde – dann war es wahrscheinlich ein Flugzeug. Flugzeuge sind zahlreich und nur wenige Sterne und Satelliten sind hell genug, um durch das Rauschen des künstlichen Lichts (Lichtverschmutzung) gesehen zu werden.

Falls nicht, beziehungsweise, falls Sie nicht in Großstadtnähe wohnen, kann das helle Lichtlein auch ein Planet sein, z.B. Venus oder Mars. Erstere ist an mehr oder weniger nahe an den Horizont gebunden: sie kann nur in der Abend- oder Morgendämmerung beobachtet werden.

Manchmal fällt es auf den ersten Blick schwer, ein tieffliegendes entferntes Flugzeug in Horizontnähe von eine hellen Planeten zu unterscheiden. Das wird jedoch durch die Beobachtung innerhalb weniger Minuten klar, weil sich das Flugzeug bewegt.

Sind Sie immer noch unsicher?

Dann ermöglicht das heutige Diagramm eine mitunter humorvolle, aber weitgehend zutreffende Einschätzung. Enthusiastische Himmelsbeobachter werden höchstwahrscheinlich Ergänzungen oder Korrekturen haben: Sie sind aufgefordert und ermutigt, diese in höflicher Form beizutragen.

Zur Originalseite

Sonnenfackel: Die berühmte aktive Region kehrt zurück

Videocredit: NASA, Solar Dynamics Observatory

Es ist zurück. Die berühmte aktive Region auf der Sonne, die Polarlichter hervorrief, die zu Beginn des Monats auf der ganzen Erde zu sehen waren, überdauerte ihre Rotation um die erdabgewandte Seite der Sonne und ist zurück. Gestern tauchte die Region, die als AR 3664 bezeichnet wurde, langsam wieder auf der erdzugewandten Seite auf. Sie schleuderte eine weitere gewaltige Sonnenfackel aus, auch diese zählt zur energiereichen Klasse X.

Das Video zeigt die auftauchende aktive Region links unten. Das Solar Dynamics Observatory der NASA im Erdorbit nahm sie gestern in Ultraviolettlicht auf. Das Video zeigt in Zeitraffer, wie die Sonne im Lauf von 24 Stunden rotiert. Die Region wurde links unten bei etwa 2 Sekunden markiert. Dort bricht die mächtige Sonnenfackel aus.

Voraussichtlich treffen keine energiereichen Teilchen dieser Fackel und dem damit zusammenhängenden KMA die Erde direkt, um eindrucksvolle Polarlichter auszulösen, aber Forschende beobachten diese ungewöhnliche aktive Region die nächsten zwei Wochen sehr genau von der Erde aus, um zu sehen, was sich entwickelt.

Zur Originalseite