Eruption der Klasse X

Die Sonne ist bildfüllend dargestellt, außen leuchtet die Korona, auf der Oberfläche leuchten einige helle Stellen mit wolkigen Schlieren dazwischen, in der Mitte ist ein weißer Fleck, der so hell leuchtet, dass die Bildpunkte des Sensors rundum überbelichtet sind.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Am Valentinstag (Eastern Time) brach auf der Sonne eine ihrer mächtigsten Explosionen aus – eine Sonneneruption der Klasse X. Der Ausbruch war der bisher größte im neuen Sonnenzyklus. Die Eruption brach in der aktiven Region AR1158 auf der Südhalbkugel der Sonne aus. Sie ist auf diesem Bild des Solar Dynamics Observatory (SDO) im extremen Ultraviolettlicht zu sehen.

Der intensive Ausbruch elektromagnetischer Strahlung überflutete für einen Moment die Bildelemente der SDO-Detektoren. Dadurch entstand die helle, senkrechte Bildstörung.

Die Eruption der Klasse X wurde von einem koronalen Massenauswurf (KMA) begleitet, das ist eine massereiche Wolke geladener Teilchen, die mit fast 900 Kilometern pro Sekunde hinausgeschleudert wurde. Leute in hohen Breitengraden sollten heute nach Polarlichtern Ausschau halten.

Zur Originalseite

Riesige Sonnenprotuberanz bricht aus

Credit: GSFC der NASA, SDO AIA Team, ESA JHelioviewer-Team

Beschreibung: Klickt auf den Pfeil und beobachtet, wie ein ungewöhnlich langes Filament aus der Sonne explodiert. Das Filament wurde diesen Monat schon mehr als eine Woche vor seiner Explosion über der Sonnenoberfläche beobachtet.

Die Bildfolge stammt vom Solar Dynamics Observatory (SDO) im Erdorbit. Sie wurde in einer Farbe des ultravioletten Lichts aufgenommen, die von Helium ausgestrahlt wird. Die Explosion erzeugte einen koronalen Massenauswurf, der sehr energiereiches Plasma ins Sonnensystem auswarf. Diese Plasmawolke verfehlte die Erde jedoch und rief daher keine Polarlichter hervor.

Der oben gezeigte Ausbruch und eine ungewöhnlich ausgedehnte Eruption im August zeigen, wie sich Gebiete, die auf der Sonnenoberfläche weit auseinander liegen, manchmal synchron verhalten können. Explosionen wie diese treten im Lauf der nächsten Jahre häufiger auf, weil sich unsere Sonne einem Aktivitätsmaximum nähert.

Zur Originalseite

Äquinoktium und Eisensonne

Die Sonne sieht auf diesem Bild ungewohnt dunkel aus, nur am Rand ist sie hell, und aus einigen Löchern strömen helle, büschelartige Lichter, unten sind zwei durch Schleifen miteinander verbunden.

Credit und Bildrechte: NASA / Goddard / SDO AIA Team

Beschreibung: Heute um 03:09 Weltzeit kreuzte die Sonne den Himmelsäquator in Richtung Süden. Dieses astronomische Ereignis ist als Äquinoktium bekannt, es markiert auf der Nordhalbkugel den ersten Tag im Herbst und den Beginn des Frühlings im Süden.

Äquinoktium bedeutet gleiche Nacht. Wenn die Sonne am Himmelsäquator steht, erleben Erdbewohner fast 12 Stunden Tageslicht und 12 Stunden Dunkelheit. Im Norden werden die Tage nun kürzer, und die Sonne sinkt am Himmel weiterhin tiefer, wenn der Winter kommt.

Betrachtet zur Feier der Tag- und Nachtgleiche diese Ansicht der Sonne im extremen Ultraviolettlicht. Es wurde vom Solar Dynamics Observatory aufgenommen, das die Sonne beobachtet. Dieses Falschfarbenbild von gestern zeigt die Emissionen stark ionisierter Eisenatome. Die Schleifen und Bögen zeigen leuchtendes Plasma, das von Magnetfeldern über aktiven Sonnenregionen gehalten wird.

Zur Originalseite

Loch in der Sonne

Im Bild ragt die Sonne auf, der untere Teil ist abgeschnitten. Die Oberfläche ist orange-braun gefleckt, in der Mitte ist ein riesiger dunkler Fleck mit einem Ausläufer nach links oben. Am Rand strahlt die Korona.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Diese bedrohliche, dunkle Form, die sich über die Oberfläche der Sonne ausbreitet, ist ein koronales Loch – eine Region mit niedriger Dichte über der Oberfläche, wo sich das Magnetfeld der Sonne frei in den interplanetaren Raum öffnet.

Koronale Löcher werden seit den 1960er Jahren vom Weltraum aus im Ultraviolett- und Gammastrahlenlicht umfassend untersucht. Sie sind als die Quelle des Hochgeschwindigkeits-Sonnenwindes bekannt – dieser besteht aus Atomen und Elektronen, die entlang der offenen Magnetfeldlinien ausströmen.

In Zeiten geringer Aktivität bedecken koronale Löcher üblicherweise Regionen an den Sonnenpolen. Doch dieses ausgedehnte koronale Loch bestimmte Anfang dieser Woche die nördliche Sonnenhalbkugel, wie die Kameras des Solar Dynamics Observatory im extremen Ultraviolettlicht zeigen. Der Sonnenwind, der von diesem koronalen Loch ausströmte, löste Polarlichter auf dem Planeten Erde aus.

Zur Originalseite

Die nicht so stille Sonne

Die obere Hälfte der Sonne ist in den Spektralbereichen von Ultraviolett abgebildet.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Nach einem langen Sonnenminimum ist die Sonne nun nicht mehr so ruhig. Dieser Sonnenschnappschuss im extremen Ultraviolett des Solar Dynamics Observatory vom 1. August zeigt einen komplexen Aktivitäts-Ausbruch auf der nördlichen Halbkugel.

Das Falschfarbenbild zeigt das heiße Sonnenplasma bei Temperaturen zwischen 1 und 2 Millionen Kelvin. Zusammen mit den ausbrechenden Filamenten und Protuberanzen brach links in der aktiven Region eine kleine(!) Sonnenfackel aus, die von einem koronalen Massenauswurf (KMA) begleitet wurde. Ein KMA ist eine Wolke aus Milliarden Tonnen energiereicher Teilchen, die zum Planeten Erde unterwegs sind.

Der koronale Massenauswurf überwand die 150 Millionen Kilometer in nur zwei Tagen und prallte auf die Magnetosphäre der Erde. Das verursachte einen Sturm im Erdmagnetfeld sowie Nord– und Südlichter.

Zur Originalseite

Dunkle Filamente der Sonne

Aus einem Ausschnitt der Sonne strömen helle Lichter entlang von Magnetfeldlinien, dazwischen schwebt eine dunkle Wolke. Links ist der Sonnenrand, über dem ein heller Nebel aufsteigt.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Das dunkle Filament, das von Magnetfeldern über einer aktiven Region in Schwebe gehalten wird, ist 40 Erddurchmesser lang. Die bedrohliche Struktur ist scheinbar nahe dem Sonnenrand in der Zeit festgefroren, doch Sonnenfilamente sind instabil und brechen häufig aus.

Das detailreiche Szenario wurde am 18. Mai von Kameras an Bord des Solar Dynamics Observatory (SDO) im extrem ultravioletten Licht aufgenommen. Das kühlere Plasma der Filamente wirkt dunkel, das heißere, hellere Plasma darunter folgt den Magnetfeldlinien, die von der aktiven Region ausgehen.

Wenn sich Filamente über den Sonnenrand wölben, wirken sie vor dem dunklen Hintergrund des Weltraums hell, sie werden dann als Protuberanzen bezeichnet.

Zur Originalseite

SDO: die extrem ultraviolette Sonne

Die Sonne ist dunkelblau und grün gefärbt dargestellt, unten fehlt ein Segment. Rund um die Sonne leuchtet eine gelbgrüne Korona, links oben ist ein riesiger Protuberanzenbogen. Auch am übrigen Sonnenrand steigen einige Protuberanzen auf.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Keine Panik, die Sonne ist nicht verrückt geworden. Doch dieses stürmisch wirkende Porträt des Sterns, welcher der Erde am nächsten steht, wurde am 30. März vom kürzlich gestarteten Solar Dynamics Observatory (SDO) gemacht. Die Kompositansicht in Falschfarben zeigt extrem ultraviolette Strahlung und heißes Plasma mit Temperaturen von fast 1 Million Kelvin.

Bei voller Auflösung sollen SDO-Bilddaten die Sonnenoberfläche in beispiellos detailreich erfoschen. SDO schickt täglich 1,5 Terabyte an Daten zur Erde, das entspricht dem täglichen Herunterladen von etwa einer halben Million Musikstücken im MP3-Format.

Zur Originalseite

Ungewöhnliche Raketenwellen zerstören eine Nebensonne

Am blauen Himmel sind Cirruswolken, in der Mitte eine startende Rakete, von der Dichtewellen ausgehen. Rechts oben ist ein Halo.

Credit und Bildrechte: George C. Privon (U. Virginia)

Beschreibung: Wie entstanden diese Raketenwellen, und warum zerstörten sie die Nebensonne? Eine genaue Betrachtung dieses Bildes zeigt nicht nur eine Rakete, die nahe der Bildmitte aufsteigt, sondern auch ungewöhnliche Luftwellen darum herum und rechts eine farbge Nebensonne.

Die Rakete startete vor zwei Wochen mit dem Solar Dynamics Observatory (SDO) an Bord von Cape Canaveral in Florida (USA) in einen kalten, blauen Himmel. Das SDO soll in den nächsten Jahren kontinuierlich die Sonne beobachten und die Sonnenatmosphäre in hoher Auflösung und kurzen Zeitskalen erforschen.

Die Luftwellen – oben etwa eine Minute nach dem Start – traten unerwartet auf, ebenso wie das plötzliche Verschwinden der Nebensonne, nachdem die Wellen vorbeigelaufen waren. Sie wurden von mehreren Zusehern beobachtet und aufgezeichnet, und es gibt viele Vermutungen über den Ursprung der Luftwellen. Ihr könnt einer laufenden Diskussion darüber im APOD-Diskussionsforum Asterisk teilnehmen. Eine wahrscheinliche Annahme besagt, dass die Wellen von einem Schallknall stammen, der entstand, als die Rakete die Schallmauer durchbrach. Dadurch wurde eine dünne Schicht aus Eiskristallen, welche die Nebensonne erzeugten, durcheinander gewirbelt.

Es bleibt jedoch die Frage, warum bei anderen Raketenstarts keine Luftwellen wie diese beobachtet wurden, und warum die Wellen oberhalb der Rakete deutlicher zu sehen waren. Wenn ihr Bilder eines Flugzeugs oder einer Rakete kennt, die ähnliche Luftwellen erzeugten, fügt diese bitte der Diskussion hinzu – vielleicht kann man mit diesen den Effekt besser erklären.

Zur Originalseite