Schichten einer totalen Sonnenfinsternis

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Innen: Solar Dynamics Observatory, LMSAL und NASA’s GSFC; Mitte: Jay Pasachoff, Ron Dantowitz und die Williams College Solar Eclipse Expedition/NSF/National Geographic; Außen: LASCO von NRL auf SOHO von ESA

Beschreibung: Weder Regen noch Schnee oder das Dunkel der Nacht können ein Raumschiff im All davon abhalten, die Sonne zu beobachten. Das SOnnen-Heliosphären-Observatorium (SOHO) der NASA kann an seinem Aussichtspunkt, der vom Planeten Erde aus 1,5 Millionen Kilometer Richtung Sonne liegt, immer die äußere Atmosphäre oder Korona der Sonne beobachten. Irdische Beobachter jedoch können nur während einer totalen Sonnenfinsternis die hübschen koronalen Ströme und Strukturen sehen – wenn der Mond kurze Zeit die überbordend helle Sonnenoberfläche abdeckt. Dann ist es möglich, die detailreiche Koronaaktivität bis zur Sonnenoberfläche zu verfolgen. Im äußeren Bereich dieses Kompositbildes ist SOHOs ungestörte Sicht der Sonnenkorona während der Finsternis letzten Monat in orangefarbenen Farbtönen abgebildet. Die krapfenförmige Region in der Mitte ist die Korona, aufgenommen von der Williams-College-Finsternisexpedition nach Salem in Oregon. Die zeitgleiche innere Ansicht stammt vom Solar Dynamics Observatory der NASA im Erdorbit, das die Sonne in extremem Ultraviolettlicht abbilden konnte, weil es sich außerhalb der Totalität befand – diese ist golden abgebildet.

Zur Originalseite

Fackle wohl, AR2673!

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, SDO und die AIA-, EVE- und HMI-Wissenschaftsteams

Beschreibung: Fast außer Sicht unseres hübschen Planeten rotiert die riesige, um sich sprühende aktive Region AR2673 mit einer weiteren heftigen Sonnenfackel um den westlichen Rand der Sonne, gefolgt von einem großen koronalen Massenauswurf am 10. September. Die Protuberanz ist auf diesem extrem ultravioletten Bild des auf die Sonne starrenden Solar Dynamics Observatory rechts zu sehen. Die heftige Protuberanz war die vierte der AR2673 in diesem Monat der Klasse X. Der letzte koronale Massenauswurf aus dieser aktiven Region kollidierte 2 Tage später mit der Magnetosphäre der Erde. Sagt nun lebewohl zu der mächtigen AR2673. In die nächsten zwei Wochen befindet sich die gewaltige Sonnenfleckengruppe auf der Rückseite der Sonne.

Mission: Farewell Cassini
Zur Originalseite

Eine riesige Sonnenprotuberanz bricht aus

Videocredit: NASAGSFC, SDO AIA Team

Beschreibung: Protuberanzen explodieren manchmal oberhalb der Sonne. Hier ist zu sehen, wie ein riesiges Filament länger als eine Woche über der Sonnenoberfläche schwebte, ehe es Ende 2010 ausbrach. Die Bildfolge wurde vom Solar Dynamics Observatory (SDO) im Erdorbit in einer Farbe des Ultraviolettlichtes aufgenommen. Die Explosion erzeugte einen koronalen Massenauswurf, der sehr energiereiches Plasma ins Sonnensystem ausstieß. Diese Plasmawolke verfehlte jedoch die Erde, daher verursachte sie keine Polarlichter. Dieser Ausbruch zeigt, wie weit voneinander entfernte Bereiche auf der Sonne manchmal gemeinsam agieren können. Explosionen wie diese treten wahrscheinlich in den nächsten Jahren weniger häufig auf, da unsere Sonne ein Minimum an magnetischer Oberflächenaktivität durchlebt.

Zur Originalseite

Merkurtransit-Musikvideo von SDO


Videocredit: NASAs Goddard Space Flight Center, Genna Duberstein; Musik: Encompass von Mark Petrie

Beschreibung: Was ist dieser kleine schwarze Punkt, der über die Sonne wandert? Merkur. Die vielleicht klarste Sicht auf Merkur, der zu Beginn der Woche vor der Sonne vorbeizog, bot der Erdorbit. Das Solar Dynamics Observatory hatte einen ununterbrochenen Ausblick bei der Aufnahme, nicht nur in sichtbarem Licht, sondern auch im Spektrum des Ultraviolettlichtes. Hier ist ein vertonter Kompositfilm der Querung zu sehen. Das Ereignis war wohl wissenschaftlich erfolgreich, weil man die Bestandteile von Merkurs ultradünner Atmosphäre besser bestimmen konnte, doch es war sicherlich kulturell erfolgreich, weil Menschen auf der ganzen Welt ein seltenes astronomisches Phänomen beobachteten. Viele eindrucksvolle Bilder dieses Merkurtransits aus (und über) der ganzen Welt werden stolz gezeigt.

Zur Originalseite

Ausbruch einer Protuberanz von SDO


Videocredit: NASA/Goddard/SDO AIA Team

Beschreibung: Zu den spektakulärsten Ansichten der Sonne gehören ausbrechende Protuberanzen. 2011 fotografierte die Raumsonde Solar Dynamic Observatory der NASA im Orbit um die Sonne eine eindrucksvoll große Protuberanz, die auf der Oberfläche ausbrach. Dieses Zeitraffervideo, das 90 Minuten abdeckt, und für das alle 24 Sekunden in Ultraviolettlicht ein neues Bild fotografiert wurde, zeigt die dramatische Explosion. Die Protuberanz ist gewaltig – die ganze Erde würde leicht unter den wallenden Schleier aus heißem Gas passen. Eine Protuberanz wird vom Magnetfeld der Sonne gelenkt und manchmal über der Sonnenoberfläche in Schwebe gehalten. Eine ruhende Protuberanz bleibt üblicherweise etwa einen Monat bestehen und kann als koronaler Massenauswurf (KMA) ausbrechen, dabei stößt sie heißes Gas ins Sonnensystem. Der Energiekreislauf, der eine Sonnenprotuberanz erzeugt, ist Gegenstand der Forschung. Da die Sonne das Sonnenmaximum überschritten hat, nehmen Sonnenaktivitäten wie ausbrechende Protuberanzen im Laufe der nächsten Jahre ab.

Zur Originalseite

Die Sonnenfleckengruppe AR 2339 kreuzt die Sonne


Images Credit: NASA, SDO; Videobearbeitung und Videorechte: Stanislav Korotkiy (AstroAlert) und Mikhail Chubarets; Musik: Pas de Deux (Bird Creek)

Beschreibung: Wie entwickeln sich Sonnenflecken? Große, dunkle Sonnenflecken – und die aktiven Regionen, die sie enthalten – können wochenlang bestehen, doch sie verändern sich die ganze Zeit. Diese Änderungen waren vor wenigen Wochen besonders offenkundig, als die Aktive Region AR 2339 am Rand der Sonne auftauchte und die darauf folgenden 12 Tage vom Solar Dynamic Observatory der NASA beobachtet wurde. In diesem Zeitraffervideo treiben manche Sonnenflecken auseinander, während andere verschmelzen. Die ganze Zeit verlagern sich die dunklen zentralen Umbrae, und die sie umgebenden helleren Penumbrae flimmern und flackern. Die umgebende Sonne scheint zu flackern, weil die wie ein Teppich wirkenden gelben Granulen im Zeitraum von Stunden kommen und gehen. Generell sind Sonnenflecken relativ kühle Regionen, wo das lokale Magnetfeld durch die Sonnenoberfläche dringt und die Aufheizung verhindert. Letzte Woche begann eine sogar noch aktivere Region – AR 2371 – die Sonne zu kreuzen und mächtige Sonnenfackeln zu auszulösen, die hier auf der Erde zu eindrucksvollen Polarlichtern führten.

Zur Originalseite

Ein extrem langes Filament auf der Sonne

Die Sonne ist bildfüllend dargestellt. Auf der Oberfläche sind pelzartige Strukturen, einige helle Flecken und ein sehr langes dunkles Filament. Am Rand ist die Sonne etwas dunkler und orangefarben.

Bildcredit und Bildrechte: Oliver Hardy

Gestern war auf der Sonne eines der längsten Filamente zu sehen, das je abgebildet wurde. Vielleicht ist es auch heute noch da. Das gewaltige Filament ist der dunkle Streifen unter der Mitte, es reicht auf der Vorderseite der Sonne über eine Distanz, die länger ist als der Sonnenradius – mehr als 700.000 Kilometer.

Ein Filament besteht aus heißem Gas, das vom Magnetfeld der Sonne in Schwebe gehalten wird. Von der Seite erscheint es als erhabene Protuberanz. Das Bild zeigt das Filament in Licht, das von Wasserstoff abgestrahlt wird. Dieses Licht zeigt auch die Chromosphäre der Sonne.

Sonnenbeobachtungsteleskope wie das Solar Dynamics Observatory (SDO) der NASA verfolgen diese ungewöhnliche Struktur. Gestern beobachtete das SDO ein einhüllendes spiralförmiges Magnetfeld. Filamente bestehen typischerweise nur Stunden oder Tage. Teile davon könnten jederzeit kollabieren oder ausbrechen. Bei einem Ausbruch werfen sie heißes Plasma entweder zur Sonne zurück oder schleudern es ins äußere Sonnensystem.

Ist das Filament noch da? Schaut nach, indem ihr auf das aktuelle SDO-Sonnenbild klickt.

Zur Originalseite

NuSTAR zeigt die Sonne in Röntgenlicht

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NuSTAR, SDO, NASA

Beschreibung: Warum sind Bereiche über Sonnenflecken so heiß? Sonnenflecken sind ein bisschen kühler als die umgebende Sonnenoberfläche, weil die sie erzeugenden Magnetfelder das Aufheizen durch Konvektion verringern. Daher ist es ungewöhnlich, dass Regionen oberhalb – in der Sonnenkorona sogar viel höher oben – Hunderte Male heißer sein können. Um die Ursache zu finden, lenkte die NASA den Satelliten Nuclear Spectroscopic Telescope Array (NuSTAR) so, dass sein sehr empfindliches Röntgenteleskop auf die Sonne gerichtet war. Oben ist die Sonne in Ultraviolettlicht zu sehen. In roten Farbtönen ist eine Aufnahme des erdumkreisenden Solar Dynamics Observatory (SDO) abgebildet. Die Sonnenflecken sind mit Emissionen in Falschfarben-Grün und -Blau überlagert, die von NuSTAR in anderen Hochenergie-Röntgenfrequenzbereichen gemessen wurden, welche Regionen mit extrem hoher Temperatur zeigen. Hinweise auf den Mechanismus, der die Sonnenatmosphäre aufheizt, kommen wohl nicht nur von diesem Erstbild. Künftige NuSTAR-Bilder sollen vermutete Nano-Eruptionen finden – kurze Energieausbrüche, welche die ungewöhnliche Aufheizung steuern könnten.

Zur Originalseite