Die Große Wolke des Magellan

Die Große Magellansche Wolke (GMW) ist mit einem beschrifteten Bild überlagert. Links leuchtet die riesige Sternbildungswolke 30 Doradus.

Bildcredit und Bildrechte: L. Comolli, L. Fontana, G. Ghioldi und E. Sordini

Im 16. Jahrhundert unternahm der portugiesische Seefahrer Ferdinand Magellan mit seiner Besatzung die erste Weltumsegelung. Dabei hatten sie reichlich Zeit, um den südlichen Sternenhimmel zu beobachten. Zwei leicht sichtbare, verschwommene, wolkige Objekte auf der Südhalbkugel sind leicht sichtbar. Sie sind seither unter Himmelsbeobachtenden als die Magellanschen Wolken bekannt. Heute werden sie als Begleitgalaxien der viel größeren Milchstraße betrachtet.

Die Große Magellansche Wolke (GMW) ist etwa 160.000 Lichtjahre entfernt. Sie befindet sich im Sternbild Schwertfisch (Dorado). Sie ist auf diesem bemerkenswert detailreichen, farbenprächtigen und beschrifteten Kompositbild dargestellt.

Ihr Durchmesser beträgt etwa 15.000 Lichtjahre. Damit ist sie die massereichste Begleitgalaxie der Milchstraße. Sie enthält die nächstgelegene Supernova der jüngsten Vergangenheit, SN 1987A. Der markante Fleck links der Mitte trägt die Bezeichnung 30 Doradus. Die gewaltige Sternbildungsregion ist auch als Tarantelnebel bekannt. Sie hat einen Durchmesser von etwa 1000 Lichtjahren.

Zur Originalseite

N11: Sternwolken der GMW

Vor einem blau leuchtenden Nebel verläuft eine ausgefranste dunkle Ranke, oben ist ein brauner Staubnebel. Im Bild sind viele Globulen aus Staub verteilt, in denen Sterne entstehen.

Bildcredit: NASA, ESA, J. Lake (Private Highscool Pomfret)

Massereiche Sterne, heftige Winde, Berge aus Staub und energiereiches Licht formen eine der größten Sternbildungsregionen in der Lokalen Gruppe. Die Region ist als N11 bekannt. Sie liegt in der Großen Magellansche Wolke (GMW), einer Nachbarin der Milchstraße. Auf vielen Bildern ihrer Heimatgalaxie liegt sie rechts oben.

Dieses Bild wurde vom Weltraumteleskop Hubble für wissenschaftliche Zwecke aufgenommen. Ein Amateur überarbeitete es nach künstlerischen Gesichtspunkten für den Wettbewerb „Hubbles verborgene Schätze„. Der oben gezeigte Abschnitt ist NGC 1763. Der ganze Emissionsnebel N11 ist nach 30 Doradus der zweitgrößte in der GMW.

Eine Untersuchung der Sterne in N11 zeigte, dass er ganze drei aufeinander folgende Generationen an Sternbildung enthält. Auch kompakte Globulen aus dunklem Staub mit neu entstehenden Sternen sind über das ganze Bild verteilt.

Zur Originalseite

Der Sternhaufen R136 bricht aus

Der Sternhaufen rechts mit vielen gleißend hellen, blauen Sternen ist von dunklen und rötlichbraunen Staubwolken umgeben.

Bildcredit: NASA, ESA und F. Paresce (INAF-IASF), R. O’Connell (U. Virginia) und das HST WFC3 Science Oversight Committee

Im Zentrum der Sternbildungsregion 30 Doradus liegt ein riesiger Sternhaufen. Er besteht aus den größten, heißesten, massereichsten Sternen, die wir kennen. Diese Sterne bilden zusammen den Sternhaufen R136. Sie wurden im sichtbaren Licht mit der neu installierten Weitwinkelkamera des generalüberholten Weltraumteleskops Hubble abgebildet.

Die Gas- und Staubwolken in 30 Doradus sind auch als Tarantelnebel bekannt. Sie wurden von mächtigen Winden und ultravioletter Strahlung der heißen Haufensterne zu länglichen Gestalten geformt. Der Nebel 30 Doradus liegt in einer Nachbargalaxie, der Großen Magellanschen Wolke. Sie ist etwa 170.000 Lichtjahre entfernt.

Helft APOD bei der Auswertung: Wie lange folgt ihr APOD schon?

Zur Originalseite

Sternbildung im Tarantelnebel

Das Bild zeigt ein Gewirr aus Staubfasern in 30 Doradus in der Großen Magellanschen Wolke. Links leuchten die Gasfasern sehr hell und fransen nach rechts in eine dunkle Umgebung mit Sternen aus.

Bildcredit: NASA, ESA, ESO, D. Lennon (ESA/STScI) et al. und das Hubble-Vermächtnisteam (STScI/AURA)

Die größte wildeste Sternbildungsregion in der ganzen Lokalen Gruppe liegt in der Großen Magellanschen Wolke (GMW). Diese ist unserer Nachbargalaxie. Wenn der Tarantelnebel so nahe wäre wie der Orionnebel, würde er den halben Himmel bedecken. Der Orionnebel ist eine nahe gelegene Sternbildungsregion.

Die rote und rosarote Gaswolke wird auch 30 Doradus genannt. Sie besteht aus massereichen Emissionsnebeln, doch es gibt dort auch Supernovaüberreste und Dunkelnebel. Der helle Sternenknoten links neben der Mitte ist R136. Er enthält viele der massereichsten und heißesten Sterne, die wir kennen.

Dieses Bild ist eines der größten Mosaike, die je aus Beobachtungsdaten des Weltraumteleskops Hubble erstellt wurden. Es zeigt beispiellose Details dieser rätselhaften Sternbildungsregion. Das Bild wurde am 22. Jahrestag des Starts des Weltraumteleskops Hubble veröffentlicht.

Zur Originalseite

Die Spiralgalaxie NGC 1672 von Hubble

Die Galaxie NGC 1672 bildfüllend dargestellt. Die Hubble-Aufnahme zeigt einen langen Zentralbalken, viele rosarote Emissionsregionen und dunkle Fasern von Staubwolken.

Bildcredit: NASA, ESA, Hubble-Vermächtnisteam (STScI/AURA); Danksagung: L. Jenkins (GSFC/U. Leicester)

Viele Spiralgalaxien haben Balken in der Mitte. Sogar unsere eigene Galaxis, die Milchstraße, hat vermutlich einen kleinen Zentralbalken. Die Spiralgalaxie NGC 1672 mit wurde mit ihrem markanten Zentralbalken vom Weltraumteleskop Hubble detailreich abgebildet.

Das Bild zeigt dunkle, faserartige Staubbahnen, junge Haufen heller, blauer Sterne, rote Emissionsnebel aus leuchtendem Wasserstoff, einen langen, hellen Balken aus Sternen in der Mitte und einen hellen aktiven Kern, der wahrscheinlich ein sehr massereiches Schwarzes Loch enthält.

Licht braucht etwa 60 Millionen Jahre, um von NGC 1672 zu uns zu gelangen. NGC 1672 ist etwa 75.000 Lichtjahren groß und steht im Sternbild Schwertfisch (Dorado). Die Galaxie wird untersucht, um herauszufinden, auf welche Weise ein Spiralbalken zur Sternbildung in der Zentralregion einer Galaxie beiträgt.

Zur Originalseite

Aufgeheizt durch die Supernova 1987A

Ein orangefarbener Kern ist von einem hellgelb leuchtenden Ring umgeben, der aus einzelnen Lichtpunkten besteht. Das Bild ist ein animiertes gif, das die Entwicklung im Lauf der Jahre zeigt.

Bildcredit: Weltraumteleskop Hubble, NASA, ESA; Videobearbeitung: Mark McDonald

Vor 25 Jahren wurde die hellste Supernova der Gegenwart entdeckt. Astronomen beobachteten sie im Lauf der Jahre. Während sich die Überreste der gewaltigen Sternexplosion ausbreiteten, prallen sie gegen früher ausgestoßene Materie.

Dieses Zeitraffervideo zeigt das eindeutige Ergebnis der Kollision. Es entstand aus Bildern, die zwischen 1994 und 2009 mit dem Weltraumteleskop Hubble aufgenommen wurden. Das animierte GIF zeigt die Kollision der Explosionswelle mit dem schon zuvor bestehenden Ring, die die sich nach außen bewegt. Der Ring ist ein Lichtjahr groß.

Die Kollision findet mit Geschwindigkeiten von fast 60 Millionen Kilometern pro Stunde statt. Sie heizte das Material des Rings so plötzlich auf, dass es zu leuchten begann. Astronominnen untersuchen die Kollision weiterhin, da sie die interessante Vergangenheit von SN 1987A beleuchtet und Hinweise auf den Ursprung der rätselhaften Ringe liefert.

Galerie: Jupiter-Venus-Mond-Konjunktion
Zur Originalseite

Die rätselhaften Ringe der Supernova 1987A

Mitten im Bild leuchtet ein Ring aus lellen Lichtern. Von diesem gehen nach oben und unten dunkelrote Ringe aus, die eine 8 bilden und nur schwach leuchten. Darum verteilt leuchten Sterne in unserer Milchstraße.

Bildcredit: ESA/Hubble, NASA

Wie entstanden die eigenartigen Ringe um die Supernova 1987A? Vor 25 Jahren – 1987 – wurde in der Großen Magellanschen Wolke die hellste Supernova der jüngsten Vergangenheit entdeckt. Mitten im Bild leuchtet der Überrest der gewaltigen Sternexplosion. Im Zentrum ist ein Objekt. Um seine Mitte verlaufen eigenartige äußere Ringe wie eine abgeflachte 8er-Schleife. Dieses Hubble-Bild des Überrestes SN1987A stammt vom letzten Jahr.

Große Teleskope wie das Weltraumteleskop Hubble beobachten regelmäßig die merkwürdigen Ringe. Trotzdem bleibt ihr Ursprung ein Rätsel. Eine Ursache der Ringe könnte eine Wechselwirkung mit Strahlen sein, die von einem verborgenen Supernovaüberrest – einem Neutronenstern – ausströmen. Auch eine Wechselwirkung zwischen dem Sternwind des Vorgängersterns und dem Gas, das beider Explosion freigesetzt wurde, wird vermutet.

Zur Originalseite

Der Fall des fehlenden Supernovabegleiters

Der Nebel füllt fast das ganze Bild. Außen ist ein roter Ring, der an eine Seifenblase erinnert, innen sind einige grün schimmernde Nebelflecke. Das Bild ist voller weißer Sterne.

Bildcredit: Röntgenstrahlung: NASA/CXC/SAO/J. Hughes et al., sichtbares Licht: NASA/ESA/Hubble-Vermächtnisteam (STScI /AURA)

Wo ist der andere Stern? Mitten in diesem Supernovaüberrest sollte der Begleiter des explodierten Sterns sein. Diesen Stern zu entdecken ist wichtig, um zu verstehen, wie Typ-Ia-Supernovae explodieren. Das könnte zu einem besseren Verständnis führen, warum die Helligkeit so einer Explosion so vorhersagbar ist. Das ist wiederum der Schlüssel zur Kalibrierung der Entfernungen im gesamten Universum.

Die Schwierigkeit ist, dass auch bei sorgfältiger Untersuchung des Zentrums von SNR 0509-67.5 kein Stern entdeckt wurde. Das lässt vermuten, dass der Begleiter sehr schwach leuchtet – viel schwächer als viele der hellen Riesensterne, die frühere Kandidaten waren. Vermutlich ist der Begleitstern ein blasser weißer Zwerg, ähnlich wie der Stern, der explodierte, aber mit viel mehr Masse.

SNR 0509-67.5 ist oben im sichtbaren Licht und Röntgenlicht abgebildet. Die rot leuchtenden Teile wurden vom Weltraumteleskop Hubble fotografiert, Röntgenlicht wurde in Falschfarbengrün dargestellt und vom Röntgenobservatorium Chandra aufgenommen. Wenn ihr den Mauspfeil über das Bild schiebt, wird die Region markiert, wo sich der fehlende Begleitstern befinden müsste.

Zur Originalseite