Zu nahe an einem schwarzen Loch

Mitten in einer sterngesprenkelten Gegend öffnet sich ein schwarzer Kreis, der wie von einem Wulst umgeben wirkt.

Credit und Bildrechte: Alain Riazuelo

Beschreibung: Was würdet ihr sehen, wenn ihr zu einem schwarzen Loch kommt? Oben seht ihr ein computergeneriertes Bild, das zeigt, wie seltsam die Dinge aussehen würden. Das schwarze Loch besitzt eine so starke Gravitation, dass Licht merklich in seine Richtung gebogen ist. Das würde einige sehr ungewöhnliche visuelle Verzerrungen verursachen.

Jeder Stern im normalen Bildfeld hat mindestens zwei helle Abbildungen, und zwar eine auf jeder Seite des schwarzen Lochs. In der Nähe des schwarzen Lochs seht ihr den gesamten Himmel, weil Licht aus jeder Richtung außen herum gebeugt wird und zu euch zurückkommt.

Die ursprüngliche Hintergrundkarte stammt aus der Himmelsdurchmusterung 2MASS in Infrarot. Die Sterne des Henry-DraperKatalogs wurden darüber gelegt. Schwarze Löcher gelten als der dichteste Zustand, den Materie annehmen kann, und es gibt indirekte Hinweise auf ihr Vorkommen in Doppelsternsystemen und in den Zentren von Kugelsternhaufen, Galaxien und Quasaren.

Zur Originalseite

Das Zentrum von Centaurus A

Links ist in einem Kreis die Galaxie Centaurus A abgebildet, rechts eine Detailaufnehme des Zentrums mit sehr markanten Staubbahnen.

Credit: E.J. Schreier (AUI) et al., Hubble, NASA; Einschub: NOAO

Beschreibung: Ein fantastisches Durcheinander junger blauer Sternhaufen, riesiger leuchtender Gaswolken und imposanter dunkler Staubbahnen umgibt die Zentralregion der aktiven Galaxie Centaurus A. Dieses Mosaik aus Bildern des Weltraumteleskops Hubble, das in blauem, grünem und rotem Licht aufgenommen wurde, ist so bearbeitet, dass es den kosmischen Mahlstrom in natürlichen Farben abbildet.

Infrarotbilder des Hubble-Teleskops zeigten auch, dass im Zentrum dieser Aktivität anscheinend Materiescheiben verborgen sind, die in ein Schwarzes Loch mit einer Milliarde Sonnenmassen hineinstrudeln.

Centaurus A ist anscheinend das Ergebnis der Kollision zweier Galaxien, und die übrig gebliebenen Trümmer werden ununterbrochen von dem Schwarzen Loch verschlungen. Forschende der Astronomie glauben, dass die Umtriebe in so einem Schwarzen Loch die Radio, Röntgen- und Gammastrahlenenergie hervorbringen, die von Centaurus A und anderen aktiven Galaxien abgestrahlt wird.

Für eine aktive Galaxie ist Centaurus A relativ nahe, sie ist nur 10 Millionen Lichtjahre entfernt, und sie ist ein verhältnimäßig leicht zugängliches Labor, um diese mächtigen Energiequellen zu erforschen.

Zur Originalseite

GRO J1655-40: Hinweis auf ein rotierendes schwarzes Loch

Ein rot-schwarzer Strudel führt hinab zu einem weißen, hellen Kern, aus dem ein Strahl nach oben strömt.

Credit: April Hobart, CXC

Beschreibung: Mitten in einem Strudel aus heißem Gas steckt wahrscheinlich ein Ungeheuer, das noch nie direkt gesehen wurde: ein schwarzes Loch. Untersuchungen des hellen Lichtes, das von dem wirbelnden Gas ausgeht, weisen häufig nicht nur auf ein schwarzes Loch hin, sondern auch auf dessen wahrscheinliche Eigenschaften.

Das Gas zum Beispiel, das GRO J1655-40 umgibt, weist ein ungewöhnliches Flackern mit einer Frequenz von 450 Mal pro Sekunde auf. Bei einer vorherigen Masse des Zentralobjektes von schätzungsweise sieben Sonnenmassen kann die Frequenz des schnellen Flackerns durch ein schwarzes Loch erklärt werden, das sehr schnell rotiert.

Welche physikalischen Wirkmechanismen das Flackern sowie eine langsamere, quasi-periodische Schwingung (QPO) in Akkretionsscheiben schlussendlich verursachen, ist noch nicht bekannt – Schwarze Löcher und Neutronensterne werden weiterhin erforscht.

Zur Originalseite

Das galaktische Zentrum in Infrarot von 2MASS

Von links unten nach rechts oben verläuft ein dunkelbraunes gefasertes Staubband vor einem Teppich aus Sternen.

Credit: 2MASS-Projekt, U. Mass., IPAC/Caltech, NSF, NASA

Beschreibung: Das Zentrum unserer Galaxis ist ein lebhafter Ort. Im sichtbaren Licht ist ein Großteil des galaktischen Zentrums von undurchsichtigem Staub verdeckt. Im Infrarotlicht leuchtet Staub stärker und verdeckt weniger. Dadurch wurde die Aufnahme fast einer Million Sterne im oben gezeigten Bild möglich.

Das galaktische Zentrum leuchtet links unten. Es liegt etwa 30.000 Lichtjahre entfernt im Sternbild Schütze (Sagittarius). Die galaktische Ebene der Milchstraße – in dieser Ebene kreist auch die Sonne – ist an der dunklen diagonalen Staubbahn erkennbar. Die undurchsichtigen Staubkörner entstehen in den Atmosphären kühler roter Riesensterne, aus ihnen entstehen Molekülwolken.

Die Region um das galaktische Zentrum leuchtet hell im Radiobereich und in energiereicher Strahlung. Das galaktische Zentrum enthält wahrscheinlich ein riesiges Schwarzes Loch.

Zur Originalseite

Schwarze Löcher in verschmelzenden Galaxien

Das Mosaik zeigt mehrere Bildfelder mit Galaxienkollisionen, die bei einer Durchmusterung erstellt wurden.

Credit: NASA / Swift / NOAO / Michael Koss und Richard Mushotzky (Univ. Maryland)

Beschreibung: Gewaltige Galaxienverschmelzungen können sehr massereiche Schwarze Löcher speisen. Theoretisch ist das Ergebnis starke Strahlung aus den Regionen um sehr massereiche Schwarze Löcher, das führt zu einigen der leuchtstärksten Objekten im Universum. Astronom*innen bezeichnen sie als aktive galaktische Kerne (AGN).

Jahrzehntelang stand jedoch anscheinend nur etwa 1 Prozent der AGN im Zusammenhang mit Galaxienverschmelzungen. Neue Ergebnisse einer Himmelsdurchmusterung des NASA-Satelliten Swift im harten (energiereichen) Röntgenlicht zeigt nun jedoch einen starken Zusammenhang von AGN mit verschmelzenden Galaxien. Die harte Röntgenstrahlung durchdringt die Staub- und Gaswolken in verschmelzenden Galaxien leichter. So zeigt sich, dass Strahlung von aktiven Schwarzen Löchern vorhanden ist.

In den Bildfeldern sind die Orte eingekreist, an denen im Röntgenbereich sehr massereiche Schwarze Löcher entdeckt wurden. Man findet sie in vielen verschmelzenden Galaxiensystemen. Die optischen Bilder stammen vom Kitt Peak National Observatory in Arizona. Oben in der Mitte ist NGC 7319 und eine kompakte Galaxiengruppe, die als Stephans Quintett bekannt ist.

Zur Originalseite

Zwei Schwarze Löcher in 3C 75

Vor einem blau leuchtenden Hintergrund sind zwei helle Flecken, von denen rosarote Nebel ausströmen, die sich nach links krümmen.

Credit: Röntgen: NASA / CXC / D. Hudson, T. Reiprich et al. (AIfA); Radio: NRAO / VLA/ NRL

Beschreibung: Was geschieht in der Mitte dieser massereichen Galaxie? Die beiden hellen Quellen in der Mitte dieses Kompositbildes aus Röntgen- (blau) und Radiodaten (rosa) sind vermutlich sehr massereiche Schwarze Löcher, die einander umkreisen und die riesige Radioquelle 3C 75 speisen. Diese sehr massereichen Schwarzen Löcher sind 25.000 Lichtjahre voneinander entfernt. Sie stoßen Ströme aus relativistischen Teilchen aus und sind von viele Millionen Grad heißem Gas umgeben, das Röntgenstrahlen emittiert. Sie sind etwa 300 Millionen Lichtjahre von uns entfernt und befinden sich in den Zentren zweier verschmelzender Galaxien im Galaxienhaufen Abell 400. Astronom*innen kommen zu dem Schluss, dass diese beiden massereichen Schwarzen Löcher in einem Binärsystem durch Gravitation verbunden sind, teils weil die gleichförmig zurückgefegte Erscheinung der Jets sehr wahrscheinlich durch ihre gemeinsame Bewegung entsteht – sie rasen mit 1200 Kilometern pro Sekunde durch das heiße Haufengas. Solche spektakulären kosmischen Verschmelzungen kommen im fernen Universum in den Umgebungen dicht gedrängter Galaxienansammlungen vermutlich häufig vor. Im Endstadium sind solche Verschmelzungen vermutlich starke Quellen von Gravitationswellen.

Zur Originalseite

Lyman-Alpha-Emitter

Links ist eine Abbildung eines gelblich verschwommenen Nebels, rechts eine Illustration: Au seiner waagrechten scheibenartigen Struktur treten nach oben und unten gelbe Auswürfe aus.

Credit: NASA / ESA, CXC, JPL-Caltech, STScI, NAOJ, J.E. Geach (Univ. Durham) et al.; Illustration: NASA/CXC/M.Weiss

Der linke Bildteil zeigt eine gewaltige Wolke aus Wasserstoff. Sie wird als Lyman-Alpha-Klecks bezeichnet und ist mehrere hunderttausend Lichtjahre groß. Im Bild wurden Daten kombiniert, die mit Teleskopen im All und auf der Erde gewonnen wurden, und zwar in Röntgenstrahlung, in sichtbarem Licht und in Infrarot. Die gigantische amöbenartige Struktur sah vor etwa 12 Milliarden Jahren so aus. Damals war das Universum ungefähr 2 Milliarden Jahre alt.

Lyman-Alpha-Emitter heißen so, weil sie starke Strahlung in der Lyman-Alpha-Emissionslinie von Wasserstoff emittieren. Normalerweise liegt die Lyman-Alpha-Emission im ultravioletten Bereich des Spektrums. Doch Lyman-Apha-Kleckse sind so weit entfernt, dass ihr Licht in sichtbare (längere) Wellenlängenbereiche rotverschoben ist.

Röntgendaten sind blau dargestellt. Sie zeigen die Anwesenheit eines sehr massereichen schwarzen Loches. Es wird im Zentrum einer aktiven Galaxie gespeist, die sich im Klumpen befindet. Die Illustration im rechten Bildfeld zeigt, dass Strahlung und Ausfluss der aktiven Galaxie vermutlich die Quelle sind, die den Wasserstoff im Klumpen aktiviert und aufheizt.

Lyman-Alpha-Kleckse zeigen vielleicht eine frühe Phase der Galaxienbildung, bei der die Aufheizung so groß war, dass sie ein weiteres rasches Anwachsen aktiver Galaxien und ihrer extrem massereichen schwarzen Löcher begrenzte.

Zur Originalseite

Hüllen um den Mikroquasar Cygnus X-1

Die Grafik zeigt einen Mikroquasar, in den Materie fällt. Er ist von einer Akkretionsscheibe umgeben.

Credit und Bildrechte: Steve Cullen (lightbuckets.com)

Beschreibung: Was passiert mit Materie, die in ein aktives Schwarzes Loch fällt? Im Fall von Cygnus X-1 gelangt wahrscheinlich nur ein kleiner Teil dieser Materie hinein. Einfallendes Gas kollidiert nicht nur mit sich selbst, sondern mit einer Akkretionsscheibe aus wirbelnder Materie, die das schwarze Loch umgibt.

Das Ergebnis könnte ein Mikroquasar sein, der im gesamten elektromagnetischen Spektrum leuchtet und mächtige Strahlen erzeugt, die einen Großteil der einfallenden Materie fast mit Lichtgeschwindigkeit in den Kosmos zurückwirft, ehe sie sich dem Ereignishorizont des schwarzen Lochs auch nur nähern kann.

Die Bestätigung, dass die Jets schwarzer Löcher Hüllen erzeugen können, welche sich ausdehnen, erfolgte kürzlich durch die Entdeckung von Hüllen um Cygnus X-1. Rechts oben ist eine solche Hülle abgebildet, die sehr wahrscheinlich durch den Jet des Mikroquasars und Kandidaten für ein schwarzes Loch Cygnus X-1 erzeugt wurde. Wenn Sie den Mauspfeil über das Bild bewegen, sehen Sie eine kommentierte Ansicht. Der physikalische Prozess, der die Jets des Schwarzen Lochs erzeugt, wird weiterhin erforscht.

Zur Originalseite