Massereiches Schwarzes Loch zerfetzt einen Stern

Rechte am Illustrationsvideo: Raumfahrtzentrum Goddard der NASA, CI Lab

Was passiert, wenn ein Stern einem Schwarzen Loch zu nahe kommt? Kürzlich beobachteten Weltraumteleskope ein Ereignis im Zentrum einer fernen Galaxie. Es wird als ASASSN-14li bezeichnet. Anscheinend erzählt es die zermürbende Geschichte eines Sterns. Zwar konnte es nicht genau beobachtet werden. Doch die Schwankungen im energiereichen Licht lassen vermuten, dass ein Teil des Sterns zerfetzt wurde. Außerdem entstand eine wirbelnde Scheibe um den dunklen Abgrund.

Die Video-Animation zeigt das mögliche Szenario. Ein Strahl läuft die Rotationsachse des Schwarzen Lochs entlang. Der weiße, innerste Teil der Scheibe leuchtet im Röntgenlicht am hellsten. Er treibt vielleicht einen periodischen, blau dargestellten Wind an.

In Röntgen- und Ultraviolettlicht wird in Zukunft beobachtet, wie Sterne von Schwarzen Löchern zerstört werden. Das passiert auch im Zentrum der Milchstraße. Diese Beobachtungen versprechen mehr Information zur komplexen Dynamik, die sich in einigen der heißesten Orte mit der stärksten Gravitation im Universum entwickelt.

Zur Originalseite

Wenn Schwarze Löcher kollidieren

Videocredit und -rechte: Arbeitsgemeinschaft Simulation extremer Raumzeiten

Was passiert, wenn zwei Schwarze Löcher kollidieren? So eine Extremsituation findet man wahrscheinlich in den Zentren einiger verschmelzender Galaxien und bei Mehrfachsternsystemen.

Das Video ist eine Computeranimation. Sie zeigt das Endstadium einer Verschmelzung. Dabei wären solche Gravitationslinseneffekte vor einem Sternfeld im Hintergrund zu sehen. Die schwarzen Regionen markieren die Ereignishorizonte des dynamischen Duos. Sterne im Hintergrund verschieben sich und bilden einen Ring an der Position ihres gemeinsamen Einsteinrings, der außen herum verläuft. Man sieht nicht nur Bilder aller Hintergrundsterne außerhalb des Einsteinrings, sondern auch Begleitbilder im Inneren.

Am Ende verschmelzen die Schwarzen Löcher. Im letzte Stadium der Verschmelzung kann es einen starken Ausbruch an Gravitationsstrahlung geben, den man vorhersagen kann. Diese Art von Nachstrahlung wird intensiv gesucht. Sie ist von gänzlich anderer Natur als Licht. Man hat sie noch nie direkt beobachtet.

Weltraum-Musikvideo: APOD-Bilder vom September 2015

Zur Originalseite

Gammastrahlen-Regen von 3C 279

Bildcredit: NASA, DOE, International Fermi LAT Collaboration

Wenn Gammastrahlen Regentropfen wären, sieht der Ausbruch eines sehr massereichen Schwarzen Lochs etwa so aus. Nicht besonders sanft fielen von 14. bis 16. Juni Photonen von Gammastrahlung auf das Weltraumteleskop Fermi, das Gammastrahlen misst. Die Energie der Photonen reichte bis 50 Milliarden Elektronenvolt. Sie stammten von der aktiven Galaxie 3C 279, die etwa 5 Milliarden Lichtjahre entfernt ist.

Jeder „Tropfen“ der Gammastrahlung ist in dieser Zeitraffer-Visualisierung ein wachsender Kreis. Seine Farbe und die maximale Größe zeigen die gemessene Energie des Gammastrahls. Es beginnt mit einem leichten Nieseln im Hintergrund. Plötzliche kommt ein Platzregen, der dann wieder abebbt. Es ist der heftige, energiereiche Ausbruch.

Die kreative, beruhigende Präsentation des historisch hellen Ausbruchs zeigt einen 5 Grad breiten Bereich am Gammastrahlen-Himmel. Er ist auf 3C 279 zentriert.

Zur Originalseite

Die nahe Spiralgalaxie NGC 4945

Schräg im Bild liegt eine Spiralgalaxie, die wir fast von der Seite sehen, mit Blick auf markante Staubbahnen. Die Seyfertgalaxie NGC 4945 liegt im Sternbild Zentaur.

Bildcredit und Bildrechte: Petri Kehusmaa, Harlingten Atacama-Observatorium

Die große Spiralgalaxie NGC 4945 mitten in dem kosmischen Galaxienporträt ist von der Seite zu sehen. NGC 4945 ist fast gleich groß wie unsere Milchstraße. Das scharfe, farbige Teleskopbild zeigt ihre staubige Scheibe. Junge blaue Sternhaufen und rosarote Sternbildungsregionen treten markant hervor.

NGC 4945 ist etwa 13 Millionen Lichtjahre entfernt. Sie liegt im weiten südlichen Sternbild Zentaur. Die Galaxie ist nur etwa sechsmal weiter entfernt als Andromeda, die große Nachbargalaxie der Milchstraße.

Die Zentralregion der Galaxie ist zwar großteils vor optischen Teleskopen verborgen. Doch Röntgen- und Infrarotbeobachtungen zeigen Hinweise auf energiereiche Strahlung und Sternbildung im Kern von NGC 4945. Ihr verdeckter Kern ist sehr aktiv. Das zeigt, dass die prächtige Universumsinsel eine Seyfertgalaxie ist. Sie enthält ein zentrales, sehr massereiches Schwarzes Loch.

Zur Originalseite

NGC 6240: verschmelzende Galaxien

Mitten im Bild leuchtet eine Galaxie, deren Aussehen an eine Explosion erinnert. Im Inneren sind rote und dunkle Wolken über einem hellgelben Zentrum. Im Hintergrund leuchten nur wenige Sterne.

Bildcredit: NASA, ESA, Hubble-Vermächtnis (STScI / AURA), A. Evans (U. Virginia / NRAO / Stony Brook U.)

NGC 6240 bietet einen seltenen, flüchtigen Blick auf eine nahe kosmische Katastrophe, die in den letzten Zügen liegt. Im Sternbild Schlangenträger (Ophiuchus) findet eine gigantische Kollision zweier Galaxien statt. Sie sind ungefähr 400 Millionen Lichtjahre entfernt.

Aus den verschmelzenden Galaxien strömen verzerrte Gezeitenschweife. Sie bestehen aus Sternen, Gas und Staub. Im Inneren finden schnelle, heftige Ausbrüche an Sternbildung statt. Die beiden massereichen Schwarzen Löcher in den ursprünglichen galaktischen Kernen verschmelzen zu einem einzigen, noch massereicheren Schwarzen Loch. Bald bleibt eine einzige große Galaxie übrig.

Dieses dramatische Bild zeigt die Szenerie. Es ist ein Komposit aus Bilddaten, die mit den Hubble-Kameras ACS und WPC3 mit Schmalband- und Breitbandfiltern aufgenommen wurden. Die Wellenlängen reichen vom nahen Infrarot bis ins sichtbare Licht.. Die Ansicht ist in der geschätzten Entfernung von NGC 6240 breiter als 300.000 Lichtjahre.

Zur Originalseite

Licht von Cygnus A in vielen Wellenlängen

Das Bild der Galaxie Cygnus A im Sternbild Schwan kombiniert Daten in vielen Wellenlängen des elektromagnetischen Spektrums. In der Mitte ist blauer Nebel, nach links und rechts strömen rötliche Wolken aus.

Bildcredit: Röntgen: NASA/CXC/SAO; Optisch: NASA/STScI; Radio: NSF/NRAO/AUI/VLA

Die Astronomie feiert das Internationalen Jahr des Lichtes. Hier seht ihr ein Bild der aktiven Galaxie Cygnus A im ganzen elektromagnetischen Spektrum mit vielen Details.

Das Bild enthält Röntgendaten des Chandra-Observatoriums in der Umlaufbahn. Sie sind blau gefärbt. Offenbar ist Cygnus A eine gewaltige Quelle energiereicher Röntgenstrahlen. Doch bekannt ist sie eher für das energiearme Ende im elektromagnetischen Spektrum.

Cygnus A ist 600 Millionen Lichtjahre entfernt. Für Radioteleskope ist sie eine der hellsten Quellen am Himmel. Cygnus A ist die größte Radiogalaxie in unserer Nähe. Radioemissionen sind im Bild rot gefärbt. Sie breiten sich nach beiden Seiten auf einer gemeinsamen Achse fast 300.000 Lichtjahre weit aus.

Die Emissionen stammen von Strahlen relativistischer Teilchen. Diese Strahlen strömen von einem sehr massereichen Schwarzen Loch im Zentrum aus. Heiße, helle Flecken markieren die Enden der Ströme, die in das kühle, dichte Material in der Umgebung dringen.

Die Daten von Hubble zeigen die Galaxie in sichtbaren Wellenlängen. Sie sind gelb gefärbt. Das Feld im Hintergrund stammt von der Digital Sky Survey (Digitale Himmelsdurchmusterung). Es ergänzt die Ansicht in vielen Wellenlängen.

Zur Originalseite

Mitten im Orion

Der Orionnebel ist bildfüllend dargestellt. Nach links oben öffnet sich eine magenta-fliederfarbene Höhlung, die links und unten in grauviolette Nebel gehüllt ist. In der Mitte leuchten die Trapezsterne. Rechts unten sind dunkle Molekülwolken und ein kleiner, kugelförmiger rosaroter Nebel mit einem hellen Stern in der Mitte.

Bildcredit und Bildrechte: László Francsics

Das scharfe kosmische Porträt zeigt den Orionnebel. In der Mitte leuchten vier heiße, massereiche Sterne. Sie werden als das Trapez bezeichnet. Die Sterne liegen eng beisammen. Ihre Region hat einen Radius von nur 1,5 Lichtjahren. Sie bilden das Zentrum im dichten Sternhaufen im Orionnebel.

Die UV-Strahlung der Trapezsterne liefert die Energie für das Leuchten der komplexen Sternbildungsregion, indem sie das Gas im Nebel ionisiert. Die meiste Energie stammt vom hellsten Stern Theta1 Orionis C.

Der Haufen im Orionnebel ist etwa drei Millionen Jahre alt. Er war früher sogar noch kompakter. Eine dynamische Analyse zeigt, dass Kollisionen von Ausreißersternen in der Vergangenheit ein Schwarzes Loch gebildet haben könnten. Es hätte mehr als 100 Sonnenmassen. Ein Schwarzes Loch im Haufen würde die hohe Geschwindigkeit der Trapezsterne erklären.

Der Orionnebel ist etwa 1500 Lichtjahre entfernt. Also wäre Schwarze Loch das am nächsten liegende in der Umgebung der Erde, das wir kennen.

Zur Originalseite

Zu nahe am Schwarzen Loch

Die Illustration zeigt in der Mitte einen schwarzen Kreis, der von wenigen hellen und mehr schwachen Sternen umgeben ist.

Bildcredit und Bildrechte: Alain Riazuelo

Was sieht man in der Nähe eines Schwarzen Loches? Dieses Bild wurde mit Computern erstellt. Es zeigt, wie seltsam alles aussieht. Das Schwarze Loch hat eine so starke Gravitation, dass Licht stark zu ihm gekrümmt wird. Das führt zu einigen sehr merkwürdigen optischen Verzerrungen.

Jeder Stern im normalen Bild hat hier mindestens zwei helle Abbildungen – je eine auf jeder Seite des Schwarzen Lochs. Nahe beim Schwarzen Loch seht ihr den ganzen Himmel. Das Licht wird aus allen Richtungen herumgekrümmt und kommt so zurück.

Die Originalkarte vom Hintergrund stammt von der 2MASS-Himmelsdurchmusterung in Infrarot. Darüber wurden die Sterne des Henry-Draper-Katalogs gelegt. Schwarze Löcher sind wohl der dichtestmögliche Zustand von Materie. Es gibt indirekte Hinweise auf ihr Vorkommen in Doppelsternsystemen und in den Zentren von Kugelsternhaufen, Galaxien und Quasaren.

Galerie: Partielle Sonnenfinsternis am Donnerstag

Zur Originalseite