Molekülwolke Barnard 68

Mitten in einem sterngefüllten Bildfeld ist ein dunkler Fleck, es ist eine Molekülwolke, die die Sterne dahinter versteckt.

Bildcredit: FORS Team, 8,2-Meter-VLT Antu, ESO

Beschreibung: Wo sind die Sterne verschwunden? Was früher für ein Loch im Himmel gehalten wurde, ist Astronomen nun als dunkle Molekülwolke bekannt. Eine hohe Konzentration aus Staub und molekularem Gas absorbiert praktisch alles sichtbare Licht der Sterne im Hintergrund. Wegen der gespenstisch dunklen Umgebung gehört das Innere von Molekülwolken zu den kältesten und isoliertesten Orten im Universum. Zu den interessantesten dunklen Absorptionsnebeln zählt eine Wolke im Sternbild Schlangenträger (Ophiuchus), die oben abgebildete Barnard 68. Dass man in der Mitte keine Sterne sieht, lässt den Schluss zu, dass Barnard 68 relativ nahe liegt. Laut Messungen ist er etwa 500 Lichtjahre entfernt und hat einen Durchmesser von einem halben Lichtjahr. Wie Molekülwolken wie Barnard 68 entstehen, ist nicht genau bekannt, doch wir wissen, dass diese Wolken selbst wahrscheinliche Orte für die Entstehung neuer Sterne sind. Man fand sogar heraus, dass Barnard 68 wahrscheinlich kollabiert und ein neues Sternsystem bildet. In Infrarot kann man sogar durch die Wolke hindurchblicken.

Zur Originalseite

IC 4603: Reflexionsnebel im Schlangenträger

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Rolf Olsen

Beschreibung: Warum ähnelt diese Sternenfeldfotografie einem impressionistischen Gemälde? Der Effekt entsteht nicht durch digitale Tricks, sondern durch große Mengen interstellaren Staubs. Staub besteht aus winzigen, kohlenstoffreichen Klümpchen, die ähnlich groß sind wie Zigarettenrauch, und stammt häufig aus den äußeren Atmosphäreschichten großer, junger Sterne. Der Staub wird verteilt, wenn der Stern stirbt, und wächst, wenn in der interstellaren Materie Dinge daran kleben bleiben. Dichte Staubwolken sind für sichtbares Licht undurchsichtig und können Hintergrundsterne vollständig verbergen. Bei weniger dichten Wolken wird die Fähigkeit des Staubs, bevorzugt blaues Sternenlicht zu reflektieren, wichtig, weil dadurch das blaue Licht der Sterne quasi aufblüht und den umgebenden Staub markiert. Nebelartige Gasemissionen, die meist in rotem Licht am hellsten leuchten, können zusammen mit diesen Regionen bilden, die scheinbar auf der Leinwand eines Künstlers entstanden sind. Oben ist der Zentralteil des Nebels IC 4603 fotografiert, der den hellen Stern SAO 184376 (8. Größenklasse) umgibt, welcher hauptsächlich den blauen Reflexionsnebel beleuchtet. IC 4603 steht in der Nähe des sehr hellen Sterns Antares (1. Größenklasse) im Sternbild Skorpion.

Zur Originalseite

M2-9 hat die Flügel eines Schmetterlingsnebels

Der Nebel M2-9 im Sternbild Schlangenträger erinnert an die Glaskolben einer Sanduhr, die waagrecht liegt. Die zugewiesenen Farben zeigen ihn in leuchtend Grün und Gelb. Er besteht aus Schichten. Im Hintergrund sind nur ein paar Sterne abgebildet.

Credit: Hubble-Vermächtnisarchiv, NASA, ESA Bearbeitung: Judy Schmidt

Werden Sterne wegen ihrer Kunst mehr geschätzt, wenn sie vergehen? Sterne zeigen ihre kunstvollste Schau meist dann, wenn sie vergehen. Bei Sternen mit geringer Masse wie unserer Sonne oder dem oben gezeigten M2-9 verwandeln sich gewöhnliche Sterne in weiße Zwerge. Dabei werfen sie ihre äußeren Gashüllen ab. Das Gas zeigt oft ein eindrucksvolles Schauspiel. Man bezeichnet es als planetarischer Nebel. Planetarische Nebel verblassen während tausenden Jahren allmählich.

M2-9 ist ein planetarischer Schmetterlingsnebel. Er ist 2100 Lichtjahre entfernt. Hier wurde er in zugewiesenen Farben dargestellt. Seine Flügel erzählen eine seltsame, unvollständige Geschichte. In der Mitte kreisen zwei Sterne in einer gasförmigen Scheibe. Diese Scheibe ist zehnmal so groß wie Plutos Umlaufbahn. Die abgestoßene Hülle des vergehenden Sterns bricht aus dieser Scheibe aus. So entsteht die zweipolige Erscheinung. Viele der physikalischen Prozesse bei der Entstehung planetarischer Nebel sind rätselhaft.

Zur Originalseite

NGC 6384: Spirale hinter den Sternen

Im Bild breitet sich die Zentralregion der Galaxie NGC 6384 aus. Die Spiralgalaxie liegt im Sternbild Schlangenträger (Ophiuchus). Das Bild des Weltraumteleskops Hubble zeigt prächtige Spiralarme und eine gelbliche diffuse Zentralregion.

Bildcredit: ESA, Hubble, NASA

Das Universum ist voller Galaxien. Doch um sie zu sehen, müssen Astronomen hinter die Sterne unserer Milchstraße blicken. Dieses farbige Porträt des Weltraumteleskops Hubble zeigt die Spiralgalaxie NGC 6384. Sie ist etwa 80 Millionen Lichtjahre entfernt und steht im Sternbild Schlangenträger. In dieser Entfernung ist NGC 6384 etwa 150.000 Lichtjahre breit. Die Hubble-Nahaufnahme zeigt einen Ausschnitt der Zentralregion dieser Galaxie. Er ist etwa 70.000 Lichtjahre breit.

Das scharfe Bild zeigt Details in den blauen Sternhaufen der fernen Galaxie. Die prächtigen Spiralarme sind von Staubbahnen gesäumt. Der helle Kern wird von gelblichem Sternenlicht geprägt. Die Einzelsterne im Bild befinden sich allesamt im relativ nahen Vordergrund. Sie gehören zu unserer Galaxis. Die helleren Sterne der Milchstraße zeigen auffällige Lichtkreuze, sie entstehen im Teleskop.

Zur Originalseite

Keplers Supernovaüberrest im Röntgenlicht

Mitten im Bild strahlt eine blau-türkis-violette Wolke. Sie entstand an der Stelle, wo Kepler vor etwa 400 Jahren eine Supernova beobachtete.

Bildcredit: Röntgenstrahlen: NASA/CXC/NCSU/M. Burkey et al.; sichtbares Licht: DSS

Wie entstand dieses Chaos? Ein Stern explodierte. Dabei entstand dieser ungewöhnlich geformte Nebel. Dieser ist Keplers Supernovaüberrest. Zu welcher Art Sterne gehörte er?

Bei einer Sternexplosion entstand diese energiereiche kosmische Wolke. Das Licht der Explosion war erstmals im Oktober 1604 auf dem Planeten Erde zu sehen. Das war vor etwa vierhundert Jahren. Die Supernova leuchtete am Himmel des frühen 17. Jahrhunderts im Sternbild Schlangenträger. Der helle neue Stern wurde vom Astronomen Johannes Kepler und seinen Zeitgenossen beobachtet. Sie suchten nach einer Erklärung für die himmlische Erscheinung. Damals gab es keine Unterstützung von Teleskopen.

Im frühen 21. Jahrhunderts wird die sich ausdehnende Trümmerwolke weiterhin untersucht. Forschende haben ein neues Verständnis der Sternentwicklung. Außerdem helfen ihnen Weltraumteleskope. Damit beobachten sie Keplers Supernovaüberrest im gesamten Spektrum.

Aktuelle Röntgendaten und Bilder des Kepler-Supernovaüberrestes wurden mit dem Röntgenobservatorium Chandra im Erdorbit aufgenommen. Diese Daten zeigen eine Häufigkeit der Elemente, die für eine Typ-Ia-Supernova sprechen. Somit war der Erzeuger ein weißer Zwergstern. Er explodierte, weil er zu viel Materie von einem begleitenden Roten Riesen aufnahm. Dabei überschritt er die Chandrasekhar-Grenze.

Die Kepler-Supernova ist etwa 13.000 Lichtjahre entfernt. Sie ist jüngste Sternexplosion in der Milchstraße.

Zur Originalseite

Zeta Oph, ein Ausreißerstern

Der bläuliche Stern in der Bildmitte schiebt eine rote, gefaserte Stooßwelle nach links.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer

Wie ein Schiff pflügt dieser Stern durch das kosmische Meer. Der Ausreißerstern Zeta Ophiuchi bildet eine gewölbte interstellare Stoßfront. Sie ist auf diesem atemberaubenden Infrarotporträt abgebildet.

Der bläuliche Stern Zeta Oph ist ein Stern mit etwa 20 Sonnenmassen. Auf dieser Falschfarbenansicht liegt er in der Nähe der Bildmitte und bewegt sich mit etwa 24 Kilometern pro Sekunde nach links. Sein starker Sternwind eilt ihm voraus. Dabei komprimiert er die staubhaltige interstellare Materie und heizt sie auf. So formt er die gekrümmte Stoßfront. Außen herum befinden sich Wolken aus relativ unbeteiligter Materie.

Was versetzte diesen Stern in Bewegung? Zeta Oph gehörte wahrscheinlich einst zu einem Doppelsternsystem mit einem massereicheren und daher kurzlebigeren Begleitstern. Als der Begleiter als Supernova explodierte und unfassbar viel Masse verlor, wurde Zeta Oph aus dem System hinausgeschleudert.

Zeta Oph ist etwa 460 Lichtjahre entfernt und 65.000 Mal leuchtstärker als die Sonne. Er wäre einer der hellsten Sterne am Himmel, wenn er nicht von undurchsichtigem Staub umgeben wäre. Das Bild ist etwa 1,5 Grad breit. In der geschätzten Entfernung von Zeta Ophiuchi entspricht das 12 Lichtjahren.

Zur Originalseite

Der Pfeifennebel

Die dunkle, ausgefranste Wolke im Bild vor einem Hintergrund aus dichten Sternen und Fasern von Dunkelnebeln erinnert entfernt an eine Pfeife.

Bildcredit und Bildrechte: Yuri Beletsky (Las Campanas Observatory, Carnegie-Wissenschaftsinstitution)

Östlich von Antares breiten sich dunkle Markierungen über ein dicht gedrängtes Sternfeld aus, das beim Zentrum unserer Galaxis liegt. Die interstellaren Staubwolken wurden Anfang des 20. Jahrhunderts von dem Astronomen E. E. Barnard katalogisiert. Dazu gehören B59, B72, B77 und B78, die als Silhouetten vor dem sternbedeckten Hintergrund zu sehen sind. Ihre zusammengesetzte Form erinnert hier an einen Pfeifenstiel und -kopf. Daher wird dieser Dunkelnebel auch Pfeifennebel genannt.

Die detailreiche, ausgedehnte Ansicht entstand mit einer Belichtungszeit von fast 24 Stunden. Sie wurde unter dem sehr dunklen Himmel der chilenischen Atacamawüste aufgenommen. Das 10 x 10 Grad große Feld liegt im aussprechbaren Sternbild Ophiuchus (Schlangenträger). Der Pfeifennebel ist Teil des Dunkelwolkenkomplexes im Schlangenträger. Er befindet sich in einer Entfernung von etwa 450 Lichtjahren. Dichte Kerne aus Gas und Staub im Inneren des Pfeifennebels kollabieren und bilden Sterne.

Zur Originalseite

Farbenprächtige Wolken bei Rho Ophiuchi

Die Region um Antares und Rho Ophiuchi ist besonders farbenprächtig, sie bietet rote, blaue und gelbe Nebel sowie dunkle Staubbahnen und einen weißen Kugelsternhaufen.

Bildcredit und Bildrechte: Tom O’Donoghue

Warum ist der Himmel bei Antares und Rho Ophiuchi so bunt? Die Farben stammen von einer Mischung an Objekten und Prozessen. Wenn feiner Staub vorne von Sternenlicht angestrahlt wird, bildet er blaue Reflexionsnebel. Gasförmige Wolken, deren Atome von ultraviolettem Sternenlicht angeregt werden, werden rötliche Emissionsnebel. Staubwolken, die von hinten beleuchtet werden, blockieren das Sternenlicht und erscheinen daher dunkel.

Der rote Überriese Antares ist einer der hellsten Sterne am Nachthimmel. Er beleuchtet die rötlich-gelben Wolken unter der Mitte. Rho Ophiuchi liegt oben in der Mitte des blauen Nebels. Der ferne Kugelsternhaufen M4 leuchtet rechts neben Antares. Rechts darüber befindet sich eine rote Wolke. Sie hüllt den Stern Sigma Scorpii ein. Die Sternwolken sind sogar noch bunter, als Menschen sie wahrnehmen können. Sie strahlen Licht im gesamten elektromagnetischen Spektrum ab.

Zur Originalseite