NuSTAR-Röntgenteleskop gestartet

Die Grafik zeigt den Aufbau und die Funktion von NuSTAR. Links ist die Fokusebene mit den Detektoren sowie das Solarpaneel. Rechts ist die Optik des Röntgenteleskops. Die beiden Teile sind mit einem leichten Mast miteinander verbunden.

Illustrationscredit und Bildrechte: Fiona Harrison et al., Caltech, NASA

Was bleibt übrig, wenn ein Stern explodiert? Um das herauszufinden, startete die NASA letzte Woche NuSTAR – das Nuclear Spectroscopic Telescope Array – in den Erdorbit. NuSTAR fokussiert harte Röntgenstrahlen, die von Atomkernen abgestrahlt werden.

Mit NuSTAR werden unter anderem die Umgebungen von Supernovaüberresten untersucht. Man erforscht, warum diese Supernovae explodierten, welche Arten von Objekten dabei entstanden sind und warum ihre Umgebung so heiß leuchtet. NuSTAR bietet uns auch einen beispiellosen Blick auf die heiße Korona unserer Sonne, heiße Gase in Galaxienhaufen und das sehr massereiche Schwarze Loch im Zentrum unserer Galaxis.

Das Bild oben ist eine künstlerische Illustration. Es zeigt, wie NuSTAR arbeitet. Das Teleskop untersucht Röntgenstrahlen, die zum Beispiel auch beim Zahnarzt eingesetzt werden. Die Röntgenstrahlen treten rechts in das Teleskop ein. Sie streifen zwei Reihen paralleler Spiegel entlang. Die Spiegel fokussieren die Strahlen auf die Detektoren links. Die beiden Einheiten sind mit einem langen, leichten Mast verbunden. Das ganze Instrument wird von den Solarpaneelen links oben mit Energie versorgt.

Der Reiz von NuSTAR besteht nicht nur in den erwarteten Ergebnissen, sondern auch in einem neuen Blick ins Universum auf bisher völlig unbekannte Dinge, die vielleicht entdeckt werden. NuSTAR bleibt voraussichtlich zwei Jahre in Betrieb.

Foliensatz (ASOW) NuSTAR von PI Fiona Harrison: Download
Zur Originalseite

HH-222: Der Wasserfallnebel

Die Nebel im Bild sind links dunkelbraun und rechts grün. Durch die Mitte fällt eine orangefarbene Struktur, deren Form an einen Wasserfall erinnert.

Bildcredit: Z. Levay (STScI/AURA/NASA), T.A. Rector (U. Alaska Anchorage) und H. Schweiker (NOAO/AURA/NSF), KPNO, NOAO

Wie entstand der Wasserfallnebel? Das weiß niemand genau. Diese Struktur in der Region NGC 1999 im großen Orion-Molekülwolkenkomplex ist eine der geheimnisvolleren, die bisher am Himmel entdeckt wurden.

Der längliche, gasförmige Strom trägt die Bezeichnung HH-222. Er ist etwa zehn Lichtjahre lang und strahlt eine ungewöhnliche Palette an Farben ab. Eine Hypothese besagt, dass die Gasfilamente durch den Wind eines jungen Sterns entstehen, der auf eine nahe Molekülwolke trifft. Das erklärt jedoch nicht, warum der Wasserfall und zartere Ströme bei einer hellen, aber ungewöhnlich nichtthermischen Radioquelle links oben zu der gekrümmten Form zusammenlaufen.

Eine andere Hypothese lautet, dass die ungewöhnliche Radioquelle von einem Binärsystem stammt. Das Binärsystem enthält demnach einen heißen, weißen Zwerg, einen Neutronenstern oder ein schwarzes Loch, und der Wasserfall strömt von diesem energiereichen System aus. Solche Systeme sind jedoch meist starke Röntgenquellen. Es wurden aber keine Röntgenstrahlen gemessen.

Vorläufig ist der Fall ungeklärt. Vielleicht lösen gut geplante künftige Beobachtungen und kluge Schlussfolgerungen den wahren Ursprung dieses rätselhaften Nebelstreifs.

Astronomie: Welche „rätselhaften Dinge“ sind am Himmel zu sehen?
Zur Originalseite

Auskühlender Neutronenstern

Das Bild zeigt eine Nebelwolke in weißgrün, blau uns violett. Rechts unten ist ein Einschub eines rot-orangefarbenen Neutronensterns, der von Strahlen umgeben ist. Rechts oben ist ein dreieckiges Stück aus dem Neutronenstern herausgeschnitten.

Credit: Röntgenstrahlung: NASA / CXC / UNAM / Ioffe / D.Page, P.Shternin et al; Sichtbares Licht: NASA / STScI; Illustration: NASA/CXC/M.Weiss)

Beschreibung: Der Supernovaüberrest Cassiopeia A (Cas A) ist behagliche 11.000 Lichtjahre entfernt. Eine Supernova ist die Todesexplosion eines massereichen Sterns. Das Licht von Cas A erreichte die Erde erstmals vor nur 330 Jahren. Die sich ausdehnende Trümmerwolke ist auf diesem Kompositbild im Röntgenlicht und im optischen Spektrum etwa 15 Lichtjahre groß. Die helle Quelle nahe der Mitte (eingefügte Illustration) ist ein Neutronenstern, das ist der unglaublich dichte, kollabierte Überrest des stellaren Kerns.

Der Neutronenstern Cas A ist immer noch heiß genug, um Röntgenlicht abzustrahlen, kühlt aber aus. Beobachtungen mit dem Röntgen-Weltraumteleskop Chandra zeigten in einem Zeitraum von 10 Jahren, dass der Neutronenstern rasch auskühlt – so schnell, dass Forschende vermuten, dass ein großer Teil im Kern des Neutronensterns eine reibungsfreie Neutronensuperfluidität erzeugt. Die Ergebnisse von Chandra sind der erste empirische Hinweis auf diesen exotischen Materiezustand.

Zur Originalseite

Vergangene und künftige Sterne von Andromeda

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit und Bildrechte: ESA/Herschel/PACS/SPIRE/J.Fritz(U.Gent) / XMM-Newton/EPIC/W.Pietsch(MPE)

Beschreibung: Die große, schöne Andromedagalaxie hat die Katalognummer M31. Die Spiralgalaxie ist 2,5 Millionen Lichtjahre von uns entfernt. Für dieses Kompositbild von Andromeda in Wellenlängen außerhalb des sichtbaren Lichts wurden Bilder zweier Weltraumteleskope kombiniert. Diese Ansicht zeigt Orte vergangener und künftiger Sterne in der Galaxie.

Rötliche Töne zeigen die Bilddaten des großen Infrarotteleskops Herschel. Es sind riesige Staubbahnen, die von den Sternen in Andromedas Spiralarmen erwärmt werden. Der Staub und das interstellare Gas der Galaxie sind das Rohmaterial für künftige Sternbildung.

Die Röntgen-Daten des Teleskops XMM-Newton sind blau dargestellt, sie zeigen Andromedas Röntgen-Doppelsternsysteme. Diese Systeme enthalten wahrscheinlich Neutronensterne oder sterngroße schwarze Löcher. Diese wiederum sind die Endstadien der Sternentwicklung.

Die Andromedagalaxie ist mehr als doppelt so groß wie unsere Milchstraße, sie hat einen Durchmesser von mehr als 200.000 Lichtjahren.

Zur Originalseite

Der junge Sternhaufen Westerlund 2

Ein lebhafter, weißlicher Nebel mit violetten Bereichen und hellen Sternen in der Mitte leuchtet mitten im Bild.

Credit: Röntgenstrahlen: Y.Nazé, G.Rauw, J.Manfroid (Université de Liège), CXC, NASA; Infrarot: E. Churchwell (Universität von Wisconsin), JPL, Caltech, NASA

Beschreibung: Die staubhaltige Sternbildungsstätte RCW 49 umgibt auf diesem Himmels-Kompositbild den jungen Sternhaufen Westerlund 2. Das Bild wurde außerhalb des sichtbaren Lichtspektrums aufgenommen. Infrarotdaten des Weltraumteleskops Spitzer sind in schwarz-weiß dargestellt und ergänzen die Falschfarben-Röntgen-Bilddaten von Chandra der heißen, energiereichen Sterne in der Zentralregion des Haufens.

Beide Ansichten einer Region im großen südlichen Sternbild Zentaur zeigen Sterne und Strukturen, die durch den undurchdringlichen Staub für optische Teleskope unsichtbar sind. Westerlund 2 ist höchstens 2 Millionen Jahre alt und enthält einige der leuchtstärksten, massereichsten und daher kurzlebigsten Sterne. Auch die Infrarotsignaturen von protoplanetaren Scheiben wurden in dieser Region mit starker Sternbildung entdeckt.

In der geschätzten Entfernung des Haufens von 20.000 Lichtjahren wäre eine Seite der quadratischen Markierung im Chandra-Feld etwa 50 Lichtjahre lang.

Zur Originalseite

Schwarze Löcher in verschmelzenden Galaxien

Das Mosaik zeigt mehrere Bildfelder mit Galaxienkollisionen, die bei einer Durchmusterung erstellt wurden.

Credit: NASA / Swift / NOAO / Michael Koss und Richard Mushotzky (Univ. Maryland)

Beschreibung: Gewaltige Galaxienverschmelzungen können sehr massereiche Schwarze Löcher speisen. Theoretisch ist das Ergebnis starke Strahlung aus den Regionen um sehr massereiche Schwarze Löcher, das führt zu einigen der leuchtstärksten Objekten im Universum. Astronom*innen bezeichnen sie als aktive galaktische Kerne (AGN).

Jahrzehntelang stand jedoch anscheinend nur etwa 1 Prozent der AGN im Zusammenhang mit Galaxienverschmelzungen. Neue Ergebnisse einer Himmelsdurchmusterung des NASA-Satelliten Swift im harten (energiereichen) Röntgenlicht zeigt nun jedoch einen starken Zusammenhang von AGN mit verschmelzenden Galaxien. Die harte Röntgenstrahlung durchdringt die Staub- und Gaswolken in verschmelzenden Galaxien leichter. So zeigt sich, dass Strahlung von aktiven Schwarzen Löchern vorhanden ist.

In den Bildfeldern sind die Orte eingekreist, an denen im Röntgenbereich sehr massereiche Schwarze Löcher entdeckt wurden. Man findet sie in vielen verschmelzenden Galaxiensystemen. Die optischen Bilder stammen vom Kitt Peak National Observatory in Arizona. Oben in der Mitte ist NGC 7319 und eine kompakte Galaxiengruppe, die als Stephans Quintett bekannt ist.

Zur Originalseite

Panorama der Walgalaxie

Das Panorama zeigt eine von der Seite sichtbare Galaxie mit vielen dunklen Staubwolken und blauen Sternbildungsregionen.

Credit und Bildrechte: DatenHubble-Vermächtnisarchiv, ESA, NASA BearbeitungNikolaus Sulzenauer

Beschreibung: Hier seht ihr die volle Länge des blauen Wals. NGC 4631 ist eine große, schöne Spiralgalaxie. Sie ist nur etwa 30 Millionen Lichtjahre entfernt und von der Kante zu sehen. Die leicht verzerrte Keilform dieser Galaxie führte zu ihrem landläufigen Namen „Walgalaxie.

Die dunklen interstellaren Staubwolken des Wals und junge, helle blaue Sternhaufen betonen dieses farbige Panorama. Nicht nur sieht das Band von NGC 4631 dem Band unserer Milchstraße ähnich, sondern auch ihre Größe ist mit der unserer Galaxis vergleichbar. Die Galaxie besitzt einen Hof aus heißem Gas, den sie ausgestoßen hat, und der in Röntgenlicht leuchte.

Die Walgalaxie ist etwa 140.000 Lichtjahre breit. Man sieht sie mit einem kleinen Teleskop im Sternbild Jagdhunde (Canes Venatici).

Zur Originalseite

Die Hand eines Pulsars

Unter einem ovalen Gebilde mit roten Lichtern am Rand hebt sich ein blauer Nebel, der an eine Hand erinnert.

Credit: P. Slane (Harvard-Smithsonian CfA) et al., CXC, NASA

Beschreibung: Verglichen mit anderen Pulsaren ist PSR B1509-58 jung. Das Licht der Supernovaexplosion, bei der er entstand, hat die Erde vor etwa 1700 Jahren erreicht. Der Neutronenstern mit einem Durchmesser von 20 Kilometern rotiert 7 Mal pro Sekunde. Er ist ein kosmischer Dynamo, der einen Strom geladener Teilchen erzeugt. Der energiereiche Wind sorgt für das Leuchten im Röntgenlicht, das den Nebel auf diesem tiefgründigen Bild des Röntgenteleskops Chandra umgibt.

Röntgenstrahlen mit niedriger Energie werden rot dargestellt, solche mit mittlerer Wellenlänge grün und Strahlung mit hoher Energie leuchtet blau. Der Pulsar befindet sich in der hellen Zentralregion. Die komplexe Struktur ähnelt einer Hand. PSR B1509-58 ist etwa 17.000 Lichtjahre entfernt im südlichen Sternbild Zirkel (Circinus). In dieser Entfernung ist das Chandrabild 100 Lichtjahre breit.

Zur Originalseite