Itokawa in Stereo

Das ro-blaue Bild zeigt den Asteroiden Itokawa, er ist von Geröll übersät und hat eine längliche, leicht gewinkelte Form.

Credit: ISAS, JAXA; Stereobild von Patrick Vantuyne

Beschreibung: Nehmt eure rot-blauen Brillen und schwebt neben dem Asteroiden Itokawa, einer winzigen Welt im Sonnensystem mit einem Durchmesser von nur einem halben Kilometer. Geröll, das über seine raue Oberfläche verstreut ist, und der Mangel an Kratern lassen vermuten, dass dieser Asteroid ein Schutthaufen ist, der entstand, indem sich kleinere Bruchstücke sammelten, die durch Gravitation zusammengehalten werden.

Dieses Stereobild entstand aus Bildern der Raumsonde Hayabusa, die 2005 den Asteroiden besuchte. Nach einer langen Reise trat die Raumsonde am 13. Juni über Australien wieder in die Atmosphäre ein und landete erfolgreich eine Kapsel an einem Fallschirm auf der Erde. Die Kapsel von Hayabusa enthält eine kleine Materialprobe des Geröllhaufen-Asteroiden Itokawa.

Zur Originalseite

JWST: Spiegel und maskierte Männer

Vor einigen großen sechseckigen Spiegelsegmenten stehen mehrere weiß gekleidete Menschen mit Schutzanzügen auf einer Montagebühne.

Mit freundlicher Genehmigung von Ball Aerospace

Beschreibung: Wer sind diese maskierten Männer? Techniker von Ball Aerospace und der NASA an der Röntgenstrahlen- und Tieftemperaturanlage am Marshall-Raumfahrtzentrum beim Test der Primärspiegelsegmente des James-Webb-Weltraumteleskops (JWST). Das JWST, das 2014 starten soll, ist für die Erforschung des frühen Universums im Infrarotlicht optimiert; dazu dient ein 6,5 Meter großer Primärspiegel aus 18 sechseckigen Segmenten.

Hier wird eine Gruppe von JWST-Spiegelsegmenten für Tests vorbereitet, um sicherzustellen, dass sie genau den Missionsanforderungen entsprechen. Die Anzüge und Masken der Techniker schützen die Spiegeloberfläche vor Verunreinigung. In der Röntgenstrahlen- und Tieftemperaturanlage werden die Spiegel in großen runden Kammern getestet, nachdem die Luft abgesaugt und die Kammer auf -240 Grad Celsius gekühlt wurde (nur 33 Grad über dem absoluten Nullpunkt). Der extrem niedrige Druck und die tiefe Temperatur simulieren die Arbeitsumgebung der JWST-Spiegel im Weltraum. Die Tests der JWST-Spiegelsegmente dauern noch 18 Monate.

Zur Originalseite

Der Kern des Kometen Halley: ein Eisberg in der Umlaufbahn

Rechts ist der Kern des Kometen Hally, sein großer, weiß leuchtender Schweif breitet sich nach links aus.

Credit und Bildrechte: Halley- Mehrfarbkamera-Team, Giotto-Projekt, ESA

Wie sieht ein Kometenkern aus? Kometenkerne bestehen aus Ursprungsmaterie des Sonnensystems. Früher vermutete man, dass sie sehr schmutzigen Eisbergen ähneln. Doch erdgebundene Teleskope zeigten nur die Wolken aus Gas und Staub, die aktive Kometen umgeben, wenn sie sich der Sonne näheren. Sie konnten nur die Koma von Kometen und die charakteristischen Kometenschweife auflösen.

1986 passierte die europäische Raumsonde Giotto Halleys Kern bei seiner Annäherung an die Sonne und schickte Bilder. Sie war eine der ersten einer Gruppe von Raumsonden, die den Kern eines Kometen besuchten und fotografierten. Aus Daten von Giottos Kamera entstand dieses überarbeitete Bild des kartoffelförmigen Kerns.

Der dunkle Kern ist etwa 15 Kilometer groß. Rechts sind einige Oberflächendetails des Kerns zu sehen, links ist die Koma aus fließendem Gas und Staub. Alle 76 Jahre gelangt Komet Halley ins innere Sonnensystem. Dabei verliert der Kern jedes Mal eine etwa 6 Meter dicke Schicht aus Eis und Gestein, die ins All verschwindet.

Die Ablagerungen, die von Halleys Kern wegströmen, werden in seinem Schweif verteilt. Daraus entstehen die Meteorströme der Orioniden und der Eta-Aquariiden. Die Orioniden sind jedes Jahr im Oktober zu sehen, jeden Mai tritt der Meteorschauer der Eta-Aquariiden auf.

Zur Originalseite

Die abreisende Raumsonde Rosetta zeigt die Erdsichel

Die Erde ist bildfüllend dargestellt, doch man sieht nur die beleuchtete schmale blau-weiße Sichel links und unten.

Credit und Bildrechte: ESA (MPS für OSIRIS-Team), MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

Auf Wiedersehen, Erde. Diesen Monat raste die interplanetare ESARaumsonde Rosetta auf ihrer weiten Reise durch das Sonnensystem an der Erde vorbei. Dieses Bild zeigt die Erde mit einer hellen Sichelphase. Sie zeigte dem vorbeifliegenden Raumschiff den Südpol. Rosetta startete 2004 von der Erde. Sie nützte ihre Gravitation, um mit ihrer Hilfe an Mars vorbeizubeschleunigen. 2014 soll sie beim Kometen Tschurjumow-Gerassimenko ankommen.

Letztes Jahr passierte die Roboter-Raumsonde den Asteroiden 2867 Šteins. Nächstes Jahr soll sie den rätselhaften Asteroiden 21 Lutetia erreichen. Wenn alles gutgeht, setzt Rosetta eine Sonde frei, die 2014 auf dem Kometen landen wird. Der Durchmesser des Kometen beträgt 15 Kilometer.

Zur Originalseite

Asteroid Eros, rekonstruiert

Der kartoffelförmige Asteroid im Bild ist von vielen Kratern übersät.

Credit: Projekt NEAR, NLR, JHUAPL, Goddard SVS, NASA

Beschreibung: Der Asteroid 433 Eros, der die Sonne zwischen Mars und der Erde umrundet, wurde im Februar 2000 von der Raumsonde NEAR-Shoemaker besucht. Hochaufgelöste Oberflächenbilder und Messungen, welche der Laser Rangefinder (NLR) der Sonde NEAR erstellte, wurden zu der obigen Visualisierung kombiniert, die auf einem abgeleiteten 3D-Modell des taumelnden Weltraumfelsens basiert. Mit NEAR entdeckten Wissenschaftler, dass Eros ein einzelner fester Körper ist, dass seine Zusammensetzung fast einheitlich ist, und dass er in den frühen Jahren unseres Sonnensystems entstand. Doch manches bleibt rätselhaft, zum Beispiel warum manche Felsen auf der Oberfläche zerfallen sind. Am 12. Februar 2001 kam es zu einem dramatischen Ende der Mission NEAR durch eine gesteuerte Bruchlandung auf der Oberfläche des Asteroiden, die sie gut genug überlebte um eine Analyse der Zusammensetzung des Oberflächenregoliths zu liefern. Im Dezember 2002 machte die NASA einen erfolglosen Versuch, mit der Raumsonde Kontakt aufzunehmen, nachdem diese 22 Monate auf der Oberfläche des Asteroiden verbracht hatte. NEAR wird wahrscheinlich Milliarden Jahre auf dem Asteroiden bleiben, als Monument menschlichen Einfallsreichtums am Wechsel zum dritten Jahrtausend.

Zur Originalseite

Dreivierteleuropa

Der Mond Europa ist von oben zur Hälfte beleuchtet, über seiner hellen Oberfläche verlaufen braune lange Risse.

Credit: Galileo-Projekt, JPL, NASA; neu bearbeitet von Ted Stryk

Beschreibung: Auch wenn die Phase dieses Mondes vertraut sein mag, der Mond selbst ist es nicht. Diese Dreiviertelphase zeigt nämlich Teile von Jupiters Mond Europa. Die robotische Sonde Galileo fotografierte dieses Bildmosaik während ihrer Mission von 1995-2003 im Orbit um Jupiter. Zu sehen sind Ebenen aus hellem Eis, Verwerfungen, die bis zum Horizont verlaufen, und dunkle Flecken, die wahrscheinlich Eis und Schmutz enthalten. Erhobenes Terrain ist vor allem nahe dem Terminator erkennbar, wo es Schatten wirft. Europa ist fast gleich groß wie der Erdmond, doch viel glatter, mit wenig Hochland oder großen Einschlagskratern. Hinweise und Bilder der Raumsonde Galileo lassen den Schluss zu, dass sich unter der eisigen Oberfläche flüssige Ozeane befinden könnten. Um die Vermutungen, dass diese Ozeane Leben enthalten könnten, näher zu untersuchen, starteten nun ESA und NASA zusammen die Vorentwicklung der Europa-Jupiter-System-Mission, einer Raumsonde, die Europa besser untersuchen soll. Wenn das Oberflächeneis dünn genug ist, könnte eine zukünftige Mission Wasserroboter ausbringen, um sich zu den Ozeanen durchzugraben und nach Leben zu suchen.

Zur Originalseite

Merkur, gezeigt von MESSENGER

Das Bild zeigt eine graue Kugel, die von weißen Gräben und einigen weißen Kratern mit Strahlen überzogen ist. Sie ist von rechts beleuchtet.

Credit: MESSENGER, NASA, JHU APL, CIW

Der Planet Merkur ist seit Beginn der Geschichtsaufzeichnung bekannt, doch Teile des innersten Planeten im Sonnensystem waren noch nie so gut zu sehen. Vor zwei Tagen sauste die Roboter-Raumsonde MESSENGER zum zweiten Mal an Merkur vorbei und fotografierte ein Gelände, das bisher nur mit einem vergleichsweise grobem Radar kartiert wurde.

Dieses Bild entstand, als MESSENGER 90 Minuten nach dem Vorbeiflug aus einer Entfernung von etwa 27.000 Kilometern zurückblickte. Zu den vielen neu abgebildeten Strukturen zählen ungewöhnlich lange Strahlen, die scheinbar wie LängengradMeridiane von einem jungen Krater am nördlichen Rand ausgehen.

Ein weiterer Vorbeiflug von MESSENGER an Merkur ist geplant, bevor er 2011 seine Bremskaketen feuert und in den Orbit eintritt.

Zur Originalseite

Raumsonde Rosetta passiert den Asteroiden Šteins

Sechs Ansichten  des Asteroiden Šteins, welche die Raumsonde Rosetta bei ihrem Vorbeiflug fotografierte.

Credit und Bildrechte: Rosetta-Team, ESA

Was ist dieser Diamant am Himmel? Bei der Reise durchs All begegnet man gelegentlich ungewöhnlichen Objekten. Das passierte der ESA-Raumsonde Rosetta am Freitag auf dem Weg zu Tschurjumow-Gerassimenko. Die Robotersonde Rosetta schwirrte nahe am Asteroiden 2867 Šteins im Asteroiden-Hauptgürtel vorbei. Die Raumsonde fotografierte viele Bilder, einige davon wurden zu einem kurzen Video zusammengefügt.

Auf den ersten Blick sieht Šteins wie ein 5 Kilometer großer Diamant aus. Doch als Rosetta vorbeizischte, wurden Krater und seine allgemeine Form erkennbar. Auf dieser Serie aus 6 Bildern springt eine markante Kette aus Kratern ins Auge. Sie verläuft auf der Oberfläche des Asteroiden senkrecht nach oben. Wahrscheinlich entstand sie durch eine zufällige Kollision mit einem Meteorstrom.

Weltraumforschende werten nun Rosettas Daten vom Asteroiden Šteins aus. Sie erforschen seine Zusammensetzung, seinen Ursprung und den Grund, warum er Licht so gut reflektiert. Während auf der Erde geforscht wird, fliegt Rosetta weiter durch unser Sonnensystem. Dabei passiert sie im November 2009 nochmals die Erde und im Juli 2010 den Asteroiden 21 Lutetia. Im November 2014 erreicht sie schließlich den Kometen Tschurjumow-Gerassimenko.

Zur Originalseite