Titan sehen

Diese Bilder zeigen den Saturnmond Titan in sichtbarem Licht (Mitte) und Infrarot, aufgenommen mit dem Instrument VIMS an Bord der Raumsonde Cassini.

Bildcredit: VIMS Team, U. Arizona, U. Nantes, ESA, NASA

Beschreibung: Der größte Saturnmond Titan ist in eine dichte Atmosphäre gehüllt und daher wirklich schwer zu sehen. Kleine Teilchen, die in der oberen Atmosphäre verteilt sind, bilden einen fast undurchdringlichen Schleier, der Licht in sichtbaren Wellenlängen stark streut und Titans Oberflächendetails vor neugierigen Augen verbirgt.

Doch in Infrarotwellenlängen kann man Titans Oberfläche besser abbilden, weil die Streuung schwächer und die Absorption durch die Atmosphäre geringer ist. Rund um dieses Bild von Titan in sichtbarem Licht (Mitte) sind einige der klarsten globalen Infrarotansichten des reizvollen Mondes angeordnet, die es bisher gibt.

Die sechs Bildfelder in Falschfarben zeigen eine fortlaufende Entwicklung in Infrarotbilddaten im Laufe von 13 Jahren. Die Daten stammen von VIMS, dem Kartierungs-Spektrometer in sichtbarem und infrarotem Licht (Visual and Infrared Mapping Spectrometer) an Bord der Raumsonde Cassini. Sie zeigen einen faszinierenden Vergleich mit Cassinis Ansicht in sichtbarem Licht.

Expertendiskussion: Wie findet die Menschheit erstmals außerirdisches Leben?

Zur Originalseite

Aufgewühlte Wolken auf Jupiter

Wo ist das fehlende Ammoniak, das Juno in Jupiter hätte finden sollen? Vielleicht entsteht es durch flache Blitze, die im Zusammenhang mit musartigen Kugeln entstehen.

Bildcredit und Lizenz: NASA/JPL-Caltech/SwRI/MSSS; Bearbeitung: Kevin M. Gill

Beschreibung: Wo ist Jupiters Ammoniak? Man erwartete, dass die Raumsonde Juno in einer Umlaufbahn um Jupiter gasförmiges Ammoniak in seiner oberen Atmosphäre entdecken würde – doch in vielen Wolken ist fast keines vorhanden.

Aktuelle Daten von Juno liefern jedoch einige Hinweise: In manchen Wolken finden anscheinend in großer Höhe eine unerwartete Art elektrischer Entladungen statt, die man als seichte Blitze bezeichnen könnte. Für Blitze sind große Ladungstrennungen nötig, diese könnten durch kollidierende musartige Kugeln entstehen, die in aufsteigenden Gaswinden hochgehoben werden.

An diesen Muskugeln bleibt Ammoniak und Wasser kleben. Sie steigen auf, bis sie zu schwer werden – danach fallen sie tief in Jupiters Atmosphäre und schmelzen. Durch diesen Prozess kommt das Ammoniak, das offensichtlich in Jupiters oberer Atmosphäre fehlt, unten wieder zum Vorschein. Die aufgewühlten Wolken, die Juno abgebildet hat, sind nicht nur faszinierend komplex – es gibt auch einige hoch gelegene, helle plötzlich auftretende Wolken.

Wenn wir die Atmosphärendynamik auf Jupiter verstehen, bekommen wir auch wertvolle Einblicke in ähnliche Atmosphären- und Blitzphänomene, die auf unserer Erde auftreten.

Höhepunkt heute Nacht: Der Perseïden-Meteorstrom
Zur Originalseite

Saturnsichel

Saturn mit den Monden Mimas, Janus und Pandora als Sichel, fotografiert von der Raumsonde Cassini.

Bildcredit: NASA, ESA, SSI, Cassini Imaging Team

Beschreibung: Von der Erde aus zeigt Saturn niemals eine Sichelphase. Doch wenn man den majestätischen Riesenplaneten von einem Raumschiff aus betrachtet, kann man auch eine sonnenbeleuchtete Sichel sehen.

Dieses Bild der Saturnsichel in natürlichen Farben wurde 2007 von der Roboter-Raumsonde Cassini fotografiert. Es zeigt Saturns Ringe von der Seite der Ringebene, die gegenüber der Sonne liegt – die unbeleuchtete Seite – das ist noch eine Ansicht, die von der Erde aus nicht sichtbar ist.

Man sieht die dezenten Farben der Wolkenbänder, die komplexen Schatten der Ringe auf dem Planeten und den Schatten des Planeten auf den Ringen. Die Monde Mimas (auf 2 Uhr) und Janus (4 Uhr) sind als Lichtpunkte zu sehen, doch es ist eine wahre Herausforderung, Pandora (8 Uhr) zu finden.

Von der Erde aus ist die Saturnscheibe derzeit fast voll, und sie steht gegenüber der Sonne. Zusammen mit dem hellen Nachbar-Riesenplaneten Jupiter geht er am frühen Abend auf.

Zur Originalseite

Mars, der Rote Planet

Dieses Teleskopfoto, das am 23. Juli in Hoegaarden in Belgien fotografiert wurde, zeigt Mars mit seiner Südpolkappe und der Region Syrtis Major.

Bildcredit und Bildrechte: Luc Debeck

Beschreibung: Auf diesem Hobbyteleskopfoto, das am 23. Juli in Hoegaarden in Belgien auf dem Planeten Erde fotografiert wurde, sieht Mars ziemlich scharf aus. Die helle Südpolkappe des Roten Planeten am oberen Rand der umgekehrten Ansicht ist in Sonnenlicht getaucht. Die dunkle Struktur, die als Syrtis Major bezeichnet wird, verläuft zum rechten (östlichen) Rand hin.

Der Rote Planet geht nun um Mitternacht auf. In wenigen Monaten – Anfang Oktober – erreicht er seine Opposition. Der Anblick in Teleskopen verbessert sich weiter, und während die Erde auf ihrer schnelleren Bahn den Mars einholt, wird die rötliche Scheibe noch größer und heller.

In der Region Syrtis Major liegt der Marskrater Jezero. Dieser ist der Landeort des Marsrovers Perseverance der Mission NASA 2020, deren Start für heute geplant ist.

Bilder des Kometen NEOWISE vom Planeten Erde: Juli 29, 28, 27, 26, 25, 24

Zur Originalseite

Mission Tianwen-1 fliegt zum Mars

Am 23. Juli startete die Schwerlastrakete Long March 5 mit der Mission Tianwen-1 in den blauen Morgenhimmel des Kosmodrom Wenchang auf der Insel Hainan in China.

Bildcredit und Bildrechte: Jeff Dai (TWAN)

Beschreibung: Am 23. Juli startete die Schwerlastrakete Long March 5 in den blauen Morgenhimmel des Kosmodrom Wenchang auf der Insel Hainan in China. Die Rakete transportierte einen Orbiter, eine Landesonde und ein Fahrzeug, um mit der ehrgeizigen Mission Tianwen-1 zum Mars Himmlische Fragen (Tiānwèn) zu beantworten.

Tianwen-1 war die zweite von drei Missionen mit einem für Juli geplanten Start zum Roten Planeten. Die Vereinigten Arabischen Emirate starteten am 19. Juli ihre Mars-Sonde al-Amal (Hope).

Der Start des Mars Perseverance Rover der NASA von der Cape Canaveral Air Force Station in den USA ist für 30. Juli vorgesehen. Das ist der am spätesten geplante Start zum Mars für 2020. Danach schließt sich das Startfenster für eine Expedition zum Mars mit möglichst geringem Energieaufwand für 2020 und öffnet sich erst wieder im Jahr 2022.

Zur Originalseite

Wie der Komet TG seinen Staubschweif bildet

Die ESA-Raumsonde Rosetta fotografierte 2015, wie Strahlen aus Staub und Gas aus dem Kometen Tschurjumow-Gerassimenko (67P/TG) austraten.

Bildcredit und Lizenz: ESA, Rosetta, NAVCAM

Beschreibung: Woher kommen die Schweife von Kometen? Es gibt keine offensichtlichen Orte auf den Kernen von Kometen, von denen die Strahlen ausströmen, aus denen ein Kometenschweif entsteht.

Dieses ist eines der besten Bilder von solchen ausströmenden Strahlen. Fotografiert wurde es 2015 von der Roboter-Raumsonde Rosetta der ESA, die von 2014 bis 2016 den Kometen 67P/Tschurjumow-Gerassimenko (Komet TG) umrundete. Das Bild zeigt Schwaden aus Gas und Staub, die an zahlreichen Stellen auf dem Kern des Kometen TG austraten, als er sich der Sonne näherte und sich erwärmte.

Der Komet hat zwei markante Lappen, der größere misst ungefähr vier Kilometer, der kleinere Lappen ist etwa 2,5 Kilometer groß, beide sind über einen dünnen Hals verbunden. Untersuchungen lassen den Schluss zu, dass die Verdampfung weit unterhalb der Kometenoberfläche stattfinden muss, sodass die Strahlen aus Staub und Eis entstehen, deren Ausströmen durch die Oberfläche wir beobachten.

Komet TG (auch bekannt als Komet 67P) verliert bei jedem seiner 6,44 Jahre dauernden Umläufe um die Sonne etwa einen Meter seines Radius in Form von Ausströmungen. Bei dieser Menge wird der Komet in wenigen Tausend Jahren vollständig zerstört. Rosettas Mission endete 2016 einem kontrollierten Aufschlag auf der Oberfläche des Kometen TG.

Zur Originalseite

Komet NEOWISE von der ISS

Komet NEOWISE, Venus und Plejaden, fotografiert von der Internationalen Raumstation.

Bildcredit: NASA ISS

Beschreibung: Komet NEOWISE (C/2020 F3) hellte am Morgenhimmel des Planeten Erde vor der Dämmerung auf. Am 3. Juli umrundete er die Sonne und ist nun unterwegs ins äußere Sonnensystem.

Im niedrigen Erdorbit geht er ebenfalls vor der Sonne auf. Dieser Schnappschuss aus der Internationalen Raumstation vom 5. Juli zeigt ihn über dem näherrückenden Leuchten am östlichen Horizont. Auf der Erde leuchtet die Venus derzeit als Morgenstern, sie ist das gleißende Himmelslicht rechts im Bild. Über der Venus schimmern die Schwestersterne des kompakten Sternhaufens der Plejaden.

Himmelsbeobachter auf der Erde können den Kometen NEOWISE mit bloßem Auge erkennen, doch mit Fernglas ist der Anblick atemberaubend.

Komet NEOWISE auf der Erdoberfläche: Interessante Bilder, die bei APOD eingereicht wurden
Zur Originalseite

Saturns nördliches Sechseck

Das Sechseck an Saturns Nordpol wurde in den 1980er Jahren bei den Voyager-Vorbeiflügen an Saturn entdeckt. Diese einzigartige Struktur ist auch nach mehr als 30 Jahre.

Bildcredit: NASA, ESA, JPL, SSI, Cassini Imaging Team

Beschreibung: Warum bilden diese Wolken auf Saturn ein Sechseck? Niemand weiß das genau. Es wurde in den 1980er-Jahren bei den Voyager-Vorbeiflügen an Saturn entdeckt, und noch nie hat jemand etwas Vergleichbares irgendwo im Sonnensystem gesehen.

Ende 2012 fotografierte die Weitwinkelkamera der Raumsonde Cassini die ersten sonnenbeleuchteten Ansichten vom nördlichen Saturn, darunter auch dieses atemberaubende Falschfarbenbild vom Nordpol des Ringplaneten. Das Kompositbild wurde aus Daten im nahen Infrarot erstellt. Es zeigt niedrige Wolken in roten Farbtönen und hoch oben liegende Wolken in Grün, was Saturns Wolkenlandschaft sehr lebendig erscheinen lässt.

Dieses und ähnliche Bilder zeigen, wie stabil das Sechsecks mehr als 30 Jahre nach Voyager noch ist. Filme von Saturns Nordpol zeigen, wie die Wolkenstruktur auch während der Rotation ihre sechseckige Form beibehält.

Anders als einzelne Wolken auf der Erde, die wie Sechsecke aussehen, hat das Wolkenmuster auf Saturn augenscheinlich sechs klar definierte Seiten, die alle fast gleich lang sind. Vier Erden würden in dieses Sechseck passen. Hinter den Wolkenoberflächen leuchten rechts oben die Bögen der auffälligen Ringe in strahlendem Blau.

Zur Originalseite