Fermi katalogisiert den Gammastrahlen-Himmel

Dargestellt ist eine Grafik des ganzen Himmels als blaues Oval, die aus Daten des Teleskops Fermi erstellt wurde. Durch die Mitte verläuft ein hellblauer Streifen, das ist die Milchstraße.

Credit: NASA, DOE, Internationale Fermi-LAT-Arbeitsgruppe

Was leuchtet am Himmel in Gammastrahlen? Das Gammastrahlen-Weltraumteleskop Fermi bietet die bisher vollständigste Antwort auf diese Frage. Es erstellte einen ersten Himmelskatalog. Fermis Quellen kosmischer Gammastrahlen zeigen die energiereichsten Teilchenbeschleuniger der Natur. Sie liefern Photonen mit 100 MeV bis 100 GeV. Das ist mehr als das 50-Millionenfache bis 50-Milliardenfache der Energie von sichtbarem Licht.

Elf Monate lang durchmusterte Fermi den Himmel mit seinem Large Area Telescope (LAT). Aus den Daten wurden 1451 Quellen katalogisiert. Zu diesen Quellen gehören energiereiche Galaxien mit intensiver Sternbildung. Auch aktive galaktische Kerne (AGN) außerhalb der Michstraße zählen dazu. Auch in unserer Milchstraße befinden sich viele Pulsare (PSR) und Pulsarwindnebel (PWN). Außerdem gibt es Supernovaüberreste (SNR), Röntgen-Doppelsterne (HXB) und Mikroquasare (MQO).

In der Mitte verläuft die Milchstraße durch Fermis Himmelskarte. Die diffuse Gammastrahlung in der galaktischen Ebene verläuft waagrecht durch das Bild. Wenn ihr den Mauspfeil über die Karte schiebt, werden die katalogisierten Gammastrahlenquellen markiert. 630 katalogisierte Quellen von Gammastrahlen sind noch unbekannt. Sie können also nicht mit beobachteten Quellen im niedrigeren Energiebereich in Verbindung gebracht werden.

Zur Originalseite

Die Einsteinkreuz-Gravitationslinse

Nitten im Bild leuchten vier eng beisammen stehende Lichtflecken, umgeben von einem blassen galaxienförmigen Nebel. Der Rest des Bildes ist dunkel mit wenigen sehr blassen Lichtpunkten.

Credit und Bildrechte: J. Rhoads (ASU) et al., WIYN, AURA, NOAO, NSF

Beschreibung: Die meisten Galaxien haben nur einen Kern – hat diese Galaxie vier? Die seltsame Antwort führt Astronominnen* zu dem Schluss, dass der Kern der Galaxie auf diesem Bild nicht einmal sichtbar ist. Stattdessen stammt das Kleeblatt in der Mitte vom Licht eines Quasars im Hintergrund. Das Gravitationsfeld der sichtbaren Vordergrundgalaxie bricht das Licht dieses fernen Quasars in vier einzelne Bilder. Der Quasar muss genau in der Sichtlinie hinter der Mitte der massereichen Galaxie stehen, um ein Trugbild wie dieses zu bilden. Der Effekt ist als Gravitationslinseneffekt bekannt, und dieses spezielle Objekt trägt die Bezeichnung Einsteinkreuz. Noch merkwürdiger ist, dass die relative Helligkeit der Bilder des Einsteinkreuzes variiert, weil sie bisweilen durch einen zusätzlichen Gravitationslinseneffekt einzelner Sterne in der Vordergrundgalaxie verstärkt werden.

Zur Originalseite

Zeittunnel

Siehe Beschreibung; ein Klick auf das Bild lädt es in der größten verfügbaren Auflösung

Credit und Bildrechte: Johannes Schedler, Panther Observatory; Zusätzliche Bilddaten: Ken Crawford, Rancho Del Sol Observatory

Beschreibung: Auf dieser kosmischen Ansicht sind gezackte Sterne in der Nähe, verschwommene Galaxien hingegen sind weit im Universum verstreut. Dieses hübsche Bild zeigt ungefähr 1/2 Grad am Himmel, es ist das Ergebnis eines Projekts des Astronomen Johannes Schedler – ein Blick in die Vergangenheit bis zu einem 12,7 Milliarden Lichtjahre entfernten Quasar. Der Quasar ist im voll aufgelösten Bild in der Mitte an einer Stelle, die durch kurze, senkrechte Linien markiert ist, gerade so sichtbar.

Der Quasar ist der wirklich helle Kern einer jungen, aktiven Galaxie und wird von einem sehr massereichen Schwarzen Loch mit Energie versorgt. Kürzlich fand man heraus, dass er eines der fernsten Objekte ist, die wir kennen. Da sich Licht mit endlicher Geschwindigkeit ausbreitet, sieht man die Galaxien, die in der Ferne zurückweichen, so, wie sie in einer immer weiter zurückliegenden Vergangenheit aussahen. Den Quasar sehen wir so wie vor ungefähr 12,7 Milliarden Jahren, als das Universum erst 7 Prozent seines jetzigen Alters hatte. Die Ausdehnung des Universums sorgte für eine Rotverschiebung des Lichtes. Schedler fügte zusätzlich Bilddaten im nahen Infrarotbereich hinzu, die der Projektmitarbeiter Ken Crawford beisteuerte, um den fernen Quasar aufzuspüren, dessen gemessene Rotverschiebung 6,04 beträgt.

Zur Originalseite