M1: Der Krebsnebel, von Hubble fotografiert

Der ovale Nebel im Bild ist ein flackerndes Gewirr aus orange-gelben und grünen Fasern, in der Mitte schimmert ein blau-weißlicher Nebel.

Bildcredit: NASA, ESA, J. Hester, A. Loll (ASU); Dank an: Davide De Martin

Diese Unordnung bleibt übrig, wenn ein Stern explodiert. Der Krebsnebel ist das Resultat einer Supernova, die 1054 n. Chr. beobachtet wurde. Er ist voller rätselhafter Fasern. Diese Fasern sind nicht nur ungemein komplex, sondern haben anscheinend auch eine höhere Geschwindigkeit, als man bei einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen. Es wird in drei Farben dargestellt, die nach wissenschaftlichen Kriterien gewählt wurden. Der Krebsnebel ist etwa 10 Lichtjahre groß. Im Zentrum des Nebels befindet sich ein Pulsar, das ist ein Neutronenstern, er hat gleich viel Masse wie die Sonne, ist aber nur so groß wie eine kleine Stadt. Der Krebs-Pulsar rotiert etwa 30-mal pro Sekunde um seine Achse.

Zur Originalseite

Ein unerwarteter Blitz im Krebsnebel

Auf zwei Bildfeldern sind je zwei rot umrandete helle Lichtquellen zu sehen. Die obere ist der Krebsnebel, er leuchtet auf dem rechten Bild vom April 2011 hell auf.

Credit: NASA, DOE, Fermi LAT, R. Buehler (SLAC, KIPAC)

Beschreibung: Warum blitzt der Krebsnebel auf? Niemand weiß das genau. Das ungewöhnliche Verhalten wurde im Lauf der letzten paar Jahre entdeckt. Es tritt anscheinend nur in sehr energiereichem Licht auf: im Spektrum von Gammastrahlen.

Vor erst einem Monat zeigten Beobachtungen des Krebsnebels mit dem Gammastrahlenteleskop Fermi ein unerwartetes Aufleuchten im Licht von Gammastrahlen. Dabei erreichte der Nebel etwa das Fünffache seiner üblichen Helligkeit in diesem Spektralbereich. Nach nur wenigen Tagen verblasste er wieder.

Üblicherweise ist die betroffene Region umso kleiner, je schneller die Veränderung geschieht. Das ist vielleicht ein Hinweis, dass der Krebspulsar am Geschehen beteiligt ist. Der mächtige Pulsar im Zentrum des Nebels ist ein kompakter Neutronenstern, der 30 Mal pro Sekunde rotiert.

Die Überlegungen richten sich besonders auf Veränderungen des Magnetfeldes, das vermutlich den mächtigen Pulsar umgibt. Rasche Veränderungen im Magnetfeld könnten zu Wellen rasch beschleunigter Elektronen führen, welche die Blitze abstrahlen könnten, möglicherweise auf ähnlichen Wegen wie unsere Sonne.

Dieses Bild zeigt, wie der Krebsnebel normalerweise im Vergleich zum Geminga-Pulsar im Gammastrahlenlicht aussieht, und wie er aussah, als er heller wurde.

Zur Originalseite

Kugelsternhaufen M15 – Bild von Hubble

Mitten im Bild leuchtet ein Kugelsternhaufen, dessen Einzelsterne fast bis ins Zentrum hinein erkennbar sind.

Credit: ESA, Hubble, NASA

Beschreibung: Sterne schwärmen wie Bienen um das Zentrum des hellen Kugelsternhaufens M15. Diese Kugel aus mehr als 100.000 Sternen ist ein Relikt aus den frühen Jahren unserer Galaxis und umkreist immer noch das Zentrum der Milchstraße.

M15, einer von etwa 150 noch übrigen Kugelsternhaufen. Man sieht ihn leicht mit einem Fernglas. Er besitzt eine der dichtesten Sternkonzentrationen im Zentrum, die wir kennen, und weist einen großen Reichtum an veränderlichen Sternen und Pulsaren auf.

Dieses scharfe Bild wurde vom Weltraumteleskop Hubble aufgenommen. Es ist etwa 120 Lichtjahre breit und zeigt die dramatische Zunahme der Sterndichte im Zentrum des Haufens. M15 ist etwa 35.000 Lichtjahre entfernt und liegt im Sternbild des geflügelten Pferdes Pegasus. Neue Hinweise lassen ein massereiches schwarzes Loch im Zentrum von M15 vermuten.

Zur Originalseite

Simeis 147: Supernovaüberrest

Wie ein Knäul aus roten Fäden schlingen sich die Wirbel in diesem Supernovaüberrest in einer Umgebung, die dicht von Sternen gesprenkelt ist.

Credit und Bildrechte: Nobuhiko Miki

Beschreibung: Man verliert leicht die Orientierung, wenn man den komplexen Fasern auf diesem detailreichen Mosaikbild des zarten Supernovaüberrestes Simeis 147 folgt. Er ist als Sh2-240 katalogisiert und bedeckt am Himmel im Sternbild Stier fast 3 Grad oder 6 Vollmonde. Das entspricht in der geschätzten Entfernung der stellaren Trümmerwolke von 3000 Lichtjahren einer Breite von 150 Lichtjahren.

Das Komposit entstand aus Bilddaten, die mit Schmalbandfiltern aufgenommen wurden, um die Emissionen von Wasserstoff- und Sauerstoffatomen zu betonen, welche die Regionen aus komprimiertem, leuchtendem Gas zeigen.

Dieser Supernovaüberrest ist etwa 40.000 Jahre alt. Das bedeutet, dass das Licht der gewaltigen Sternexplosion die Erde erstmals vor 40.000 Jahren erreichte. Doch dieser sich ausdehnende Überrest ist nicht das einzige Nachspiel. Die kosmische Katastrophe hinterließ auch einen Pulsar, das ist ein rotierender Neutronenstern. Dieser ist alles, was vom ursprünglichen Kern des Sterns übrig blieb.

Zur Originalseite

Der scheue Quallennebel

Rechts unten leuchtet ein orange-grüner dichter Nebel, der an eine Qualle erinnert. In der Mitte und auf einer größeren Fläche leuchtet ein blasserer, grün-blauer Nebel, der von dunklen Staubfasern durchzogen ist.

Bildcredit und Bildrechte: Bob Franke

Beschreibung: Diese faszinierende Falschfarben-Teleskopansicht zeigt den sonst blassen und schwer fassbaren Quallennebel. Er wird von den hellen Sternen Mu und Eta Geminorum am Fuß eines himmlischen Zwillings flankiert. Der Quallennebel ist der hellere gewölbte Emissionswall mit baumelnden Tentakeln rechts unter der Bildmitte.

Die kosmische Qualle ist Teil des blasenförmigen Supernova-Überrestes IC 443, er ist eine sich ausdehnenden Trümmerwolke eines explodierten massereichen Sterns. Das Licht der Explosion erreichte die Erde vor mehr als 30.000 Jahren. Wie der Krebsnebel-Supernovaüberrest, ihr Cousin in astrophysischen Gewässern, enthält auch IC 443 einen Neutronenstern, das ist der Überrest des kollabierten Inneren des Sterns.

Der Emissionsnebel Sharpless 249 füllt das Feld links oben. Der Quallennebel ist etwa 5000 Lichtjahre entfernt. In dieser Entfernung hätte das Bild einen Durchmesser von etwa 300 Lichtjahren.

Das Farbschema, das für das Schmalband-Komposit verwendet wurde, wurde durch Bilder des Weltraumteleskops Hubble bekannt. Es kartiert Emissionen von Sauerstoff-, Wasserstoff- und Schwefelatomen in blauen, grünen und roten Farben.

Zur Originalseite

Die Hand eines Pulsars

Unter einem ovalen Gebilde mit roten Lichtern am Rand hebt sich ein blauer Nebel, der an eine Hand erinnert.

Credit: P. Slane (Harvard-Smithsonian CfA) et al., CXC, NASA

Beschreibung: Verglichen mit anderen Pulsaren ist PSR B1509-58 jung. Das Licht der Supernovaexplosion, bei der er entstand, hat die Erde vor etwa 1700 Jahren erreicht. Der Neutronenstern mit einem Durchmesser von 20 Kilometern rotiert 7 Mal pro Sekunde. Er ist ein kosmischer Dynamo, der einen Strom geladener Teilchen erzeugt. Der energiereiche Wind sorgt für das Leuchten im Röntgenlicht, das den Nebel auf diesem tiefgründigen Bild des Röntgenteleskops Chandra umgibt.

Röntgenstrahlen mit niedriger Energie werden rot dargestellt, solche mit mittlerer Wellenlänge grün und Strahlung mit hoher Energie leuchtet blau. Der Pulsar befindet sich in der hellen Zentralregion. Die komplexe Struktur ähnelt einer Hand. PSR B1509-58 ist etwa 17.000 Lichtjahre entfernt im südlichen Sternbild Zirkel (Circinus). In dieser Entfernung ist das Chandrabild 100 Lichtjahre breit.

Zur Originalseite

Fermi katalogisiert den Gammastrahlen-Himmel

Dargestellt ist eine Grafik des ganzen Himmels als blaues Oval, die aus Daten des Teleskops Fermi erstellt wurde. Durch die Mitte verläuft ein hellblauer Streifen, das ist die Milchstraße.

Credit: NASA, DOE, Internationale Fermi-LAT-Arbeitsgruppe

Was leuchtet am Himmel in Gammastrahlen? Das Gammastrahlen-Weltraumteleskop Fermi bietet die bisher vollständigste Antwort auf diese Frage. Es erstellte einen ersten Himmelskatalog. Fermis Quellen kosmischer Gammastrahlen zeigen die energiereichsten Teilchenbeschleuniger der Natur. Sie liefern Photonen mit 100 MeV bis 100 GeV. Das ist mehr als das 50-Millionenfache bis 50-Milliardenfache der Energie von sichtbarem Licht.

Elf Monate lang durchmusterte Fermi den Himmel mit seinem Large Area Telescope (LAT). Aus den Daten wurden 1451 Quellen katalogisiert. Zu diesen Quellen gehören energiereiche Galaxien mit intensiver Sternbildung. Auch aktive galaktische Kerne (AGN) außerhalb der Michstraße zählen dazu. Auch in unserer Milchstraße befinden sich viele Pulsare (PSR) und Pulsarwindnebel (PWN). Außerdem gibt es Supernovaüberreste (SNR), Röntgen-Doppelsterne (HXB) und Mikroquasare (MQO).

In der Mitte verläuft die Milchstraße durch Fermis Himmelskarte. Die diffuse Gammastrahlung in der galaktischen Ebene verläuft waagrecht durch das Bild. Wenn ihr den Mauspfeil über die Karte schiebt, werden die katalogisierten Gammastrahlenquellen markiert. 630 katalogisierte Quellen von Gammastrahlen sind noch unbekannt. Sie können also nicht mit beobachteten Quellen im niedrigeren Energiebereich in Verbindung gebracht werden.

Zur Originalseite

Fermis Gammastrahlen-Pulsare

Der ganze Himmel ist dunkelblau oval dargestellt, waagrecht verläuft ein rotes Band. Über das Bild sind einzelne Strahlungsquellen verteilt.

NASA, DOE, Fermi-LAT-Arbeitsgemeinschaft

Pulsare entstehen in Supernovae. Sie sind rotierende Neutronensterne. Das sind kollabierte Kerne von Sternen. Diese kollabierten Kerne bleiben bei finalen Explosionen massereicher Sterne übrig.

Pulsare werden meist entdeckt, indem man ihre regelmäßigen Radiopulse entdeckt und erforscht. Nun wurden zwei Dutzend Pulsare vom Weltraumteleskop Fermi in der Energie extremer Gammastrahlen entdeckt. 16 Pulsare fand man nur durch ihre gepulsten Emissionen in Gammastrahlen.

Diese Karte zeigt den ganzen Himmel in Gammastrahlen. In der Mitte verläuft die Ebene unserer Milchstraße. Die Positionen von Pulsaren sind markiert. Die 16 neuen Fermi-Pulsare sind gelb eingekreist. 8 Radiopulsare waren schon zuvor bekannt. Sie sind mit rosaroten Kreisen markiert.

Die hellsten bizarren Sternenreste am Gammastrahlenhimmel sind der Vela-Pulsar, der Krebs-Pulsar und der Geminga-Pulsar auf der rechten Seite. Die Pulsare Taz, Eel und Rabbit wurden nach den Nebeln benannt, die sie mit Energie versorgen. Auch die Pulsare Gamma Cygni und CTA 1 links gehören zu den expandierenden Supernovaüberresten gleichen Namens.

Zur Originalseite