Venustransit 2012

Vor der orangeroten Sonne mit Granulation, Sonnenflecken und Filamenten ist rechts oben der Planet Venus als schwarzer Kreis zu sehen. Am Sonnenrand sind einige Protuberanzen, die größte davon ist oben.

Bildcredit und Bildrechte: Chris Hetlage

Venustransite treten paarweise auf. Dazwischen liegen mehr als hundert Jahre. Das Teleskop wurde im Jahr 1608 erfunden. Seither ereigneten sich erst acht Venustransite. Der nächste findet im Dezember 2117 statt. Viele moderne Teleskope und Kameras wurden auf den Venustransit dieser Woche gerichtet und zeigten den Planeten als seltene Silhouette vor der Sonne.

Dieses scharfe Teleskopbild aus dem US-Bundesstaat Georgia entstand mit Schmalband-H-alpha-Filter. Es zeigt die runde Scheibe des Planeten vor der marmorierten Sonnenoberfläche. Auf der Sonne zeichnen sich dunklen Filamenten, Sonnenflecken und Protuberanzen ab.

Der Transit dauerte 6 Stunden und 40 Minuten. Früher maßen Astronomen den Zeitablauf eines Transits an verschieden Orten. So bestimmten sie die Entfernung zur Venus. Heute suchen Weltraumforschende aktiv nach Planeten, die sich vor ferne Sonnen schieben.

Zur Originalseite

Gefährlicher Sonnenaufgang auf Gliese 876d

Am Himmel des Planeten Gliese 876d geht der rote Zwergstern auf, um den er kreist. Der Stern links ist von mächtigen Protuberanzen umgeben. Die Landschaft wirkt unwirtlich und vulkanisch.

Illustrationscredit und Bildrechte: Inga Nielsen (Hamburg Obs., Gate to Nowhere)

Vielleicht ist ein Sonnenaufgang auf dem Planeten Gliese 876d gefährlich. Niemand kennt die tatsächlichen Bedingungen auf diesem weit innen liegenden Planeten, der um den veränderlichen Roten Zwergstern Gliese 876 kreist. Doch diese künstlerische Darstellung vermittelt einen Eindruck davon.

Die Bahn des Planeten Gliese 876d ist kleiner als die Merkurbahn, und er hat die mehrfache Masse der Erde. Daher rotiert Gliese 876d vielleicht so langsam, dass es beträchtliche Unterschiede zwischen Nacht und Tag gibt. Auf der Illustration von Gliese 876d gibt es starkem Vulkanismus, der vielleicht durch Gezeiten ausgelöst wird, die den Planeten durchwalken und innen aufheizen. Tagsüber sind die Schwankungen womöglich stärker.

Der aufgehende Rote Zwergstern hat vermutlich eine starke stellare Magnetfeldaktivität und mächtige Protuberanzen, diese sind im Bild dargestellt. Am Himmel wird die dünne Atmosphäre eines hypothetischen Mondes vom Sternwind des Roten Zwerges weggeblasen.

Gliese 876d regt die Fantasie an, teils weil er einer der wenigen extrasolaren Planeten ist, die sich unseres Wissens in oder nahe der habitablen Zone ihrer Ursprungssterne befinden.

Zur Originalseite

Sonnenfackel am Gammastrahlenhimmel

Zwei Ovale zeigen den Himmel in Gammastrahlen. Im oberen Oval ist das hellste Licht der Vela-Pulsar, im unteren Oval vom 7. März leuchtet die Sonne um ein Vielfaches heller als alles andere.

Bildcredit: NASA, DOE, Internationale Fermi LAT- Arbeitsgemeinschaft

Was leuchtet am Gammastrahlenhimmel? Die Antwort lautet normalerweise: Die exotischsten und energiereichsten astrophysikalischen Umgebungen. Dazu zählen aktive Galaxien mit sehr massereichen schwarzen Löchern oder unglaublich dichte Pulsare, das sind die rotierenden Überreste explodierter Sterne.

Doch am 7. März markierte eine mächtige Sonnenfackel aus einer Serie aktueller Sonnenausbrüche den Gammastrahlenhimmel. Sie erreichte die ein-milliardenfache Energie von Photonen im sichtbaren Licht.

Die beiden Bildfelder zeigen die Intensität der Sonnenfackel auf Bildern des ganzen Himmels. Sie wurden vom Gammastrahlenteleskop Fermi in der Erdumlaufbahn aufgenommen. Am 6. März war die Sonne wie an den meisten anderen Tagen für Fermis Bilddetektoren fast unsichtbar. Doch beim Ausbruch der energiereichen Fackel der Klasse X wurde sie im Gammastrahlenlicht fast 100-mal heller als sogar der Vela-Pulsar.

Inzwischen verblasste die Sonne aus Fermis Sicht wieder. Wahrscheinlich leuchtet sie am Gammastrahlenhimmel wieder hell auf, wenn der Sonnenfleckenzyklus sein Maximum erreicht.

Zur Originalseite

Funkelnde orange Sonne

Der orangefarbene Ball auf dunklem Hintergrund ist die Sonne. Sie ist invertiert abgebildet, daher am Rand heller als in der Mitte. Auf der Oberfläche sind einige helle und dunkle Strukturen sowie Granulation.

Bildcredit und Bildrechte: Alan Friedman (Averted Imagination)

Unsere Sonne wird ein umtriebiger Ort. Dieses Foto von letzter Woche zeigt die Sonne mit vielen interessanten Strukturen. Eine davon war die Sonnenfleckengruppe AR 1339 rechts im Bild. Sie war eine der größten, die je dokumentiert wurden. Erst letztes Jahr erwachte die Sonne aus einem jahrelangen, ungewöhnlich ruhigen Sonnenminimum.

Dieses Bild entstand in einer speziellen Lichtfarbe, dem sogenannten H-alpha-Licht. Das Negativbild wurde in Falschfarben gefärbt. Spikulen bedecken einen Großteil der Sonnenoberfläche. Die Randverdunkelung zum Sonnenrand hin (im Negativ eine Aufhellung) entsteht, weil das kühlere Sonnengas zum Rand hin mehr Strahlung absorbiert. Über den Sonnenrand ragen mehrere gleißende Sonnenfackeln. Auf der Sonnenoberfläche sind die Protuberanzen als helle Streifen zu sehen. Visuell interessant sind die magnetisch verworrenen Aktiven Regionen mit kühlen Sonnenflecken.

Wenn sich das Magnetfeld der Sonne in den nächsten Jahren einem Sonnenmaximum nähert, wird die Sonnenoberfläche durch die zunehmende Aktivität wohl noch komplexer.

Zur Originalseite

Die entfesselte Sonne

Die Sonne ist mit orangefarbenen Flecken überzogen. Nach rechts bricht eine Sonnenprotuberanz aus, die über den rechten Bildrand hinausreicht.

NASA / Goddard / SDO AIA Team

Beschreibung: Am 7. Juni stieß die Sonne eine mittelgroße Sonnenfackel aus, als durch die Rotation die aktive Region eines Sonnenflecks an den Sonnenrand gelangte. Doch dieser Fackel folgte ein gewaltiger Strom aus magnetisiertem Plasma. Der Ausbruch ist auf diesem Bild des Solar Dynamics Observatory im extremen Ultraviolettlicht am Sonnenrand zu sehen.

Spektakuläre Filme des Ereignisses zeigen das dunklere, kühlere Plasma über Stunden hinweg, während es über einer großen Region auf der Sonnenoberfläche absinkt. Dabei wölbt es sich entlang von sonst unsichtbaren Magnetfeldlinien.

Bei dem Ereignis wurde ein koronaler Massenauswurf (KMA) in die ungefähre Richtung der Erde geschleudert. Ein KMA ist eine massereiche Wolke stark aufgeladener Teilchen. Diese Wolke könnte nach einem Streifschuss in der Erdmagnetosphäre bereits Polarlichtaktivität ausgelöst haben.

Zur Originalseite

SDO beobachtet den Ausbruch einer Sonnenprotuberanz

Dieses Video ist nicht mehr verfügbar.

Credit: NASA/Goddard/SDO AIA Team

Beschreibung: Eine der spektakulärsten Sonnenansichten ist der Ausbruch einer Protuberanz. Vor zwei Wochen dokumentierte die Raumsonde Solar Dynamics Observatory SDO der NASA in einer Sonnenumlaufbahn eine eindrucksvoll große Protuberanz der Oberfläche.

Die dramatische Explosion wurde im Ultraviolettlicht auf einem 90-Minuten-Video festgehalten. Dabei wurde alle 24 Sekunden ein neues Bild aufgenommen. Das Ausmaß der Protuberanz ist riesig. Die ganze Erde hätte leicht zweimal unter den Vorhang aus fließendem heißem Gas gepasst.

Eine Sonnenprotuberanz wird von Magnetfeldern gelenkt und manchmal von diesen über der Sonnenoberfläche in Schwebe gehalten. Eine ruhende Protuberanz bleibt oft etwa einen Monat lang bestehen und kann als koronaler Massenauswurf (KMA) ausbrechen, bei dem heißes Gas ins Sonnensystem geschleudert wird.

Der Energie-Wirkmechanismus einer Sonnenprotuberanz wird immer noch untersucht. Während sich die Sonne in den nächsten Jahren einem Aktivitätsmaximum nähert, treten Sonnenaktivitäten wie aktive Protuberanzen voraussichtlich häufiger auf.

Zur Originalseite

Eruption der Klasse X

Die Sonne ist bildfüllend dargestellt, außen leuchtet die Korona, auf der Oberfläche leuchten einige helle Stellen mit wolkigen Schlieren dazwischen, in der Mitte ist ein weißer Fleck, der so hell leuchtet, dass die Bildpunkte des Sensors rundum überbelichtet sind.

Credit: NASA / Goddard / SDO AIA Team

Beschreibung: Am Valentinstag (Eastern Time) brach auf der Sonne eine ihrer mächtigsten Explosionen aus – eine Sonneneruption der Klasse X. Der Ausbruch war der bisher größte im neuen Sonnenzyklus. Die Eruption brach in der aktiven Region AR1158 auf der Südhalbkugel der Sonne aus. Sie ist auf diesem Bild des Solar Dynamics Observatory (SDO) im extremen Ultraviolettlicht zu sehen.

Der intensive Ausbruch elektromagnetischer Strahlung überflutete für einen Moment die Bildelemente der SDO-Detektoren. Dadurch entstand die helle, senkrechte Bildstörung.

Die Eruption der Klasse X wurde von einem koronalen Massenauswurf (KMA) begleitet, das ist eine massereiche Wolke geladener Teilchen, die mit fast 900 Kilometern pro Sekunde hinausgeschleudert wurde. Leute in hohen Breitengraden sollten heute nach Polarlichtern Ausschau halten.

Zur Originalseite

Riesige Sonnenprotuberanz bricht aus

Credit: GSFC der NASA, SDO AIA Team, ESA JHelioviewer-Team

Beschreibung: Klickt auf den Pfeil und beobachtet, wie ein ungewöhnlich langes Filament aus der Sonne explodiert. Das Filament wurde diesen Monat schon mehr als eine Woche vor seiner Explosion über der Sonnenoberfläche beobachtet.

Die Bildfolge stammt vom Solar Dynamics Observatory (SDO) im Erdorbit. Sie wurde in einer Farbe des ultravioletten Lichts aufgenommen, die von Helium ausgestrahlt wird. Die Explosion erzeugte einen koronalen Massenauswurf, der sehr energiereiches Plasma ins Sonnensystem auswarf. Diese Plasmawolke verfehlte die Erde jedoch und rief daher keine Polarlichter hervor.

Der oben gezeigte Ausbruch und eine ungewöhnlich ausgedehnte Eruption im August zeigen, wie sich Gebiete, die auf der Sonnenoberfläche weit auseinander liegen, manchmal synchron verhalten können. Explosionen wie diese treten im Lauf der nächsten Jahre häufiger auf, weil sich unsere Sonne einem Aktivitätsmaximum nähert.

Zur Originalseite