Advanced LIGO: verbesserte Gravitationswellendetektoren

Die Arme dieses Gravitationswellen-Observatoriums LIGO im US-Bundesstaat Washington sind je vier Kilometer lang. Sie befinden sich auf einem rostbraunen Untergrund in der Wüste.

Bildcredit: LIGO, Caltech, MIT, NSF

Wenn man Ladung beschleunigt, entsteht elektromagnetische Strahlung, nämlich Licht. Doch wenn man Masse beschleunigt, entstehen Gravitationswellen. Licht war die ganze Zeit sichtbar. Doch ein bestätigter direkter Nachweis von Gravitationswellen ist schwierig. Wenn Gravitationswellen absorbiert werden, entsteht ein winziges symmetrisches Wackeln. Es ist ähnlich, wie wenn man einen Gummiball quetscht und dann schnell wieder loslässt.

Mit getrennten Detektoren kann man Gravitationswellen von alltäglichen Stößen unterscheiden. Starke astronomische Quellen von Gravitationswellen rütteln gleichzeitig an den Detektoren. Das passiert sogar dann, wenn die Detektoren auf gegenüberliegenden Seiten der Erde stehen.

Das Bild zeigt die Arme eines solchen Detektors. Sie sind vier Kilometer lang. Es ist das Laser-Interferometer Gravitationswellen-Observatorium (LIGO) im US-Bundesstaat Washington. Die Detektoren für Gravitationswellen werden ständig verbessert. Das geschieht auch beim Schwesterinterferometer in Louisiana. Sie heute nun empfindlicher als je zuvor.

Zur Originalseite

Der Vela-Supernovaüberrest

Das Panoramabild ist 10 Grad breit. Es zeigt den Vela-Supernovaüberrest, der in der Milchstraße liegt, daher ist der Hintergrund dicht mit Sternen gespickt.

Bildcredit und Bildrechte: CEDIC TeamBearbeitung: Wolfgang Leitner

Die komplexe, schöne Himmelslandschaft liegt in der Ebene der Milchstraße. Das Teleskopbild zeigt den nordwestlichen Rand im Sternbild Segel (Vela). Der Ausschnitt ist breiter als 10 Grad. In der Mitte liegt hellste Filament im Vela-Supernovaüberrest. Er ist eine Trümmerwolke, die sich ausdehnt.

Die Wolke entstand bei der finalen Explosion eines massereichen Sterns. Ihr Licht erreichte die Erde vor etwa 11.000 Jahren. Von der kosmischen Katastrophe blieben komprimierte Filamente aus leuchtendem Gas zurück. Dabei entstand auch ein unglaublich dichter, rotierender Sternkern. Es ist der Vela-Pulsar.

Der Supernovaüberrest im Sternbild Schiffssegel ist etwa 800 Lichtjahre entfernt. Er ist in einen größeren, älteren Supernovaüberrest eingebettet, den Gum-Nebel.

Zur Originalseite

Sharpless 249 und der Quallennebel

Das Teleskopbild zeigt links oben den Emissionsnebel Sharpless 249. Rechts unten befindet sich der kompakte Quallennebel. Er ist als IC 443 katalogisiert. Der Hintergrund ist voller kleiner Sterne. Die beiden hellen Sterne links und rechts im Bild sind Mu und Eta Geminorum.

Bildcredit und Bildrechte: César Blanco González

Das Teleskopmosaik zeigt den blassen, schwer fassbaren Quallennebel. Die Szenerie ist rechts und links an den hellen Sternen Mu und Eta Geminorum verankert. Sie leuchten am Fuß der Himmelszwillinge. Der Quallennebel ist die helle, gebogene Emission rechts unter der Mitte. Unten baumeln seine Tentakel.

Die kosmische Qualle liegt im blasenförmigen Supernovaüberrest IC 443. Das ist die wachsende Trümmerwolke eines massereichen Sterns, der explodiert ist. Das Licht der Explosion erreichte die Erde vor mehr als 30.000 Jahren.

Sein Cousin in astrophysikalischen Gewässern ist der Krebsnebel. Auch er ist ein Supernovaüberrest. Beide Nebel enthalten einen Neutronenstern. Das ist der Rest des kollabierten Sternkerns. Der Emissionsnebel links oben ist Sharpless 249.

Der Quallennebel ist etwa 5000 Lichtjahre entfernt. In dieser Entfernung ist das Schmalband-Kompositbild etwa 300 Lichtjahre groß.

Zur Originalseite

M1: Der Krebsnebel

Mitten im Bild ist ein wolkiges Knäul mit vielen roten und blauen Fasern. Darum herum sind wenige schwach leuchtende Sterne verteilt.

Bildcredit und Bildrechte: Martin Pugh

Der Krebsnebel ist als M1 katalogisiert. Er ist also das erste Objekt auf Charles Messiers berühmter Liste aus dem 18. Jahrhundert von Dingen, die keine Kometen sind. Wir wissen heute, dass der Krebs die Trümmer einer Supernova sind. Er entstand nach der finalen Explosion eines massereichen Sterns. Die Supernova wurde 1054 beobachtet.

Diese scharfe, erdgebundene Teleskopansicht entstand aus Schmalbanddaten. Sie zeichnen die Emissionen ionisierter Sauerstoff- und Wasserstoffatome in Blau und Rot auf. So ist es leichter, die verschlungenen Fasern in der immer noch expandierenden Wolke zu erforschen.

Der Krebs-Pulsar ist ein Neutronenstern, der 30 Mal pro Sekunde rotiert. Er ist eines der exotischsten Objekte, die zeitgenössische Forschende kennen. Man sieht ihn als hellen Fleck mitten im Nebel. Wie ein kosmischer Dynamo liefert der kollabierte Überrest des Sternkerns die Energie für das Leuchten der Krabbe im gesamten elektromagnetischen Spektrum.

Der Krebsnebel ist zirka 12 Lichtjahre groß. Seine Entfernung beträgt an die 6500 Lichtjahre. Man findet den Nebel im Sternbild Stier.

Zur Originalseite

Kosmischer Krebsnebel

Zwischen gleichmäßig verteilten Sternen leuchtet der planetarische Nebel M1. Er ist eine längliche, lebhafte Wolke, die am Rand rötlich und innen weiß leuchtet.

Bildcredit: NASA, Chandra-Röntgenobservatorium, SAO, DSS

Der Krebs-Pulsar ist ein magnetischer Neutronenstern. Er ist so groß wie eine Stadt und rotiert 30 Mal pro Sekunde um seine Achse. Der Pulsar befindet sich in der Mitte des Krebsnebels, der auf diesem Weitwinkelbild dargestellt ist. Der Supernovaüberrest liegt in unserer Milchstraße.

Das Kompositbild entstand aus optischen Übersichtsdaten und Röntgendaten des Chandra-Observatoriums im Orbit. Es wurde zur 15-Jahres-Feier von Chandras Erforschung des Hochenergie-Kosmos veröffentlicht.

Wie ein kosmischer Dynamo liefert der Pulsar die Energie für die Emissionen im Röntgenbereich und im sichtbaren Licht des Nebels. Dazu beschleunigt er geladene Teilchen auf extreme Energien und erzeugt so die Strahlen und Ringe, die im Röntgenlicht leuchten. Die innerste Ringstruktur ist etwa ein Lichtjahr groß.

Der rotierende Pulsar hat mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern des massereichen Sterns, der explodierte. Der Nebel besteht aus den Überresten der äußeren Schichten des Sterns, die sich ausdehnen. Die Supernovaexplosion wurde im Jahr 1054 beobachtet.

Zur Originalseite

Aussicht in der Nähe eines Schwarzen Lochs

Ein roter Strudel reicht wie ein Trichter in die Tiefe, unten leuchtet eine helle Kugel, von der ein Strahl senkrecht aufsteigt.

Illustrationscredit: April Hobart, CXC

Mitten in einem Strudelbecken aus heißem Gas sitzt wahrscheinlich ein Ungeheuer, das noch nie direkt zu sehen war: ein Schwarzes Loch. Wenn man das helle Licht untersucht, das vom wirbelnden Gas abgestrahlt wird, bietet das häufig nicht nur Hinweise auf ein Schwarzen Lochs, sondern auch auf seine wahrscheinlichen Eigenschaften.

Man fand heraus, dass das Gas um beispielsweise GRO J1655-40 ungewöhnlich flackert. 450 Mal pro Sekunde flackert dieses Gas. Eine frühere Abschätzung der Masse des Objekts im Zentrum ergab sieben Sonnenmassen. Daher kann die Frequenz des schnellen Flackerns durch ein Schwarzes Loch erklärt werden, das sehr schnell rotiert.

Welche physikalischen Mechanismen das Flackern und eine langsamere quasiperiodische Schwingung in Akkretionsscheiben um Schwarze Löcher und Neutronensterne verursacht, wird noch erforscht.

Zur Originalseite

Der flüchtige Quallennebel

Hinter dünn verteilten Sternen leuchtet links neben dem hellen Stern Eta Geminorum im Sternbild Zwillinge ein quallenförmiger Nebel.

Bildcredit und Bildrechte: Dieter Willasch (Astro-Cabinet)

Der Quallennebel auf dieser Teleskopansicht ist normalerweise blass und flüchtig. Er dümpelt in der Nähe des hellen Sterns Eta Geminorum am Fuß eines himmlischen Zwillings. Die Tentakel des Quallennebels baumeln neben dem hellen, gebogenen Rand des Emissionsnebels.

Eigentlich gehört die kosmische Qualle zum Supernovaüberrest IC 443. Das ist die Trümmerwolke eines explodierten massereichen Sterns, die sich ausdehnt. Das Licht der Explosion erreichte den Planeten Erde vor mehr als 30.000 Jahren. Sein Vetter in astrophysikalischen Gewässern ist der Krebsnebel. Er ist ebenfalls ein Supernova-Überrest. Wie dieser enthält IC 443 einen Neutronenstern, das ist der Überrest des kollabierten Sternkerns.

Der Quallennebel ist etwa 5000 Lichtjahre entfernt. In dieser Distanz wäre das Bild etwa 100 Lichtjahre breit.

Zur Originalseite

Simeis 147: Supernovaüberrest

Das Bild zeigt den rot leuchtenden Supernovaüberrest Simeis 147, der wegen seiner Form, die scheinbar aus verschlungenen Fasern besteht, auch Spaghettinebel genannt wird.

Bildcredit und Bildrechte: Rogelio Bernal Andreo (Deep Sky Colors)

Man verliert leicht die Orientierung, wenn man den verschlungenen Fasern folgt. Das detailreiche Mosaikbild zeigt den blassen Supernovaüberrest Simeis 147 (S147). Er ist auch als Sh2-240 katalogisiert und bedeckt am Himmel fast 3 Grad, das ist so breit wie 6 Vollmonde.

Die stellare Trümmerwolke ist etwa 3000 Lichtjahre entfernt. In dieser Distanz ist sie etwa 150 Lichtjahre breit. Der helle Stern Elnath oder auch Beta Tauri verankert das Bild rechts. Er liegt an der Grenze zwischen den Sternbildern Stier (Taurus) und Fuhrmann (Auriga). Am Himmel der Erde befindet er sich fast exakt gegenüber dem galaktischen Zentrum.

Dieses scharfe Kompositbild entstand aus Bilddaten, die mit einem Schmalbandfilter fotografiert wurden. So können die Emissionen von Wasserstoffatomen gezeigt werden, die das erschütterte leuchtende Gas markieren.

Das Licht der massereichen Sternexplosion erreichte die Erde vor etwa 40.000 Jahren. Doch der sich ausdehnende Überrest ist nicht die einzige Hinterlassenschaft. Die kosmische Katastrophe ließ auch einen rotierenden Neutronenstern oder Pulsar zurück. Er ist alles, was vom Kern des ursprünglichen Sterns übrig bleibt.

Zur Originalseite