Der einsame Neutronenstern im Supernovaüberrest E0102-72.3

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: (NASA/CXC/ESO/F. Vogt et al.); Optisch: (ESO/VLT/MUSE und NASA/STScI)

Beschreibung: Warum sitzt dieser Neutronenstern nicht in der Mitte? Vor einiger Zeit wurde ein einsamer Neutronenstern in den Trümmern einer alten Supernovaexplosion entdeckt. Der „einsame Neutronenstern“, um den es geht, ist der blaue Punkt in der Mitte des roten Nebels links unten in E0102-72.3.

Auf diesem Bildkomposit ist Röntgenlicht, das vom Chandra-Observatorium der NASA fotografiert wurde, blau abgebildet, während optisches Licht, das mit dem Very Large Telescope der ESO in Chile und dem Weltraumteleskop Hubble der NASA im Orbit fotografiert wurde, rot und grün dargestellt wird.

Die versetzte Position dieses Neutronensterns ist unerwartet, da der dichte Stern vermutlich der Kern jenes Sterns ist, der als Supernova explodierte und den äußeren Nebel bildete. Es wäre möglich, dass der Neutronenstern in E0102 durch die Supernova selbst aus der Mitte des Nebels gestoßen wurde, doch dann wäre es seltsam, dass der kleinere rote Ring auf den Neutronenstern zentriert bleibt. Alternativ könnte der äußere Nebel durch ein anderes Szenario entstanden sein – vielleicht sogar unter Einfluss eins anderen Sterns. Künftige Beobachtungen der Nebel und des Neutronensterns werden das Rätsel wahrscheinlich lösen.

Zur Originalseite

Fermis Wissenschaftsfinalisten

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Illustrationscredit: NASA, DOE, International Fermi LAT Collaboration, Jay Friedlander (Goddard Spaceflight Center)

Beschreibung: Mit der Fermi-Wissenschaftsstichwahl feiern wir 10 Jahre Forschung im Hochenergieuniversum mit dem Gammastrahlen-Weltraumteleskop Fermi. Diese beiden Finalisten haben alle früheren Abstimmungsrunden im Wettbewerb gewonnen und treten als letzte gegeneinander an.

Die beiden digitalen Illustrationen aus einer Liste mit Fermis 16 interessantesten Entdeckungen sind die Spitzenkandidaten des Wettbewerbs, sie setzten sich im Semifinale gegen den 12. Kandidaten „Neue Hinweise auf Dunkle Materie“ und den 14. „Sternbeben in einem Magnetarsturm“ durch. Links sind neu entdeckte, unvorhergesagte Gammastrahlenblasen über und unter der Ebene unserer Milchstraße mit einem Durchmesser von 25.000 Lichtjahren abgebildet. Rechts kollidieren gewaltsam verschmelzende Neutronensterne des ersten Gravitationswellenereignisses, das je durch Gammastrahlen entdeckt wurde.

Wählen Sie eins der Bilder und geben Sie hier Ihre Stimme ab, um das beliebteste wissenschaftliche Ergebnis aus Fermis erster Dekade zu wählen.

Zur Originalseite

Sharpless 249 und der Quallennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Albert Barr

Beschreibung: Dieses hübsche Teleskopbild zeigt den Quallennebel, der normalerweise blass und schwer fassbar ist. Die zentrierte Szene ist rechts und links an den beiden hellen Sternen Mu und Eta Geminorum am Fuß der himmlischen Zwillinge verankert.

Der Quallennebel ist der hellere gewölbte Emissionsbogen mit baumelnden Tentakeln. Die kosmische Qualle ist Teil des blasenförmigen Supernovaüberrestes IC 443 – der expandierenden Trümmerwolke eines explodierten massereichen Sterns. Das Licht der Explosion erreichte erstmals vor mehr als 30.000 Jahren den Planeten Erde. Wie sein Cousin in astrophysikalischen Gewässern, der Krebsnebel-Supernovaüberrest, enthält der Quallennebel einen Neutronenstern – den Rest eines kollabierten Sternkerns. Ein Emissionsnebel, der als Sharpless 249 katalogisiert ist, füllt links oben das Feld. Der Quallennebel ist ungefähr 5000 Lichtjahre entfernt. In dieser Entfernung wäre das Bild etwa 300 Lichtjahre groß.

Zur Originalseite

Die Krabbe aus dem All

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA – Röntgen: CXC, Optisch: STSCI, Infrarot: JPL-Caltech

Beschreibung: Der Krebsnebel ist als M1 katalogisiert, er ist das erste Objekt auf Charles Messiers berühmter Liste von Dingen, die keine Kometen sind. Die Krabbe nun als Supernovaüberrest bekannt, wobei die Trümmer der Todesexplosion eines massereichen Sterns auseinanderfliegen. Dieses faszinierende Falschfarbenbild kombiniert Daten der Weltraumobservatorien Chandra, Hubble und Spitzer, um die Trümmerwolke in Röntgen (blau-weiß), sichtbarem Licht (violett) und Infrarot (rosarot) zu erforschen.

Der Krebsnebel ist eines der exotischsten Objekte, das zeitgenössische Astronomen kennen – ein Neutronenstern, der 30-mal pro Sekunde rotiert. Es ist der helle Punkt nahe der Bildmitte. Dieser kollabierte Überrest des Sternkerns liefert wie ein kosmischer Dynamo die Energie für die Strahlung der Krabbe, die im gesamten elektromagnetischen Spektrum leuchtet. Der Krebsnebel ist ungefähr 12 Lichtjahre groß und steht 6500 Lichtjahre entfernt im Sternbild Stier.

Zur Originalseite

GW170817: Spektakuläre Verschmelzung in mehreren Wellenlängen entdeckt

Erklärungsvideo-Credit: Bildgebungslabor der NASA

Bei einer explosiven Verschmelzung wurden erstmals kurz nacheinander Gravitationswellen und elektromagnetische Strahlung gemessen. Die Daten des Ausbruchs passen zur finalen Spirale, auf der zwei Neutronensterne in einem Binärsystem verschmelzen. Der explosionsartige Vorgang wurde am 17. August in der elliptischen Galaxie NGC 4993 beobachtet. Sie ist nur 130 Millionen Lichtjahre entfernt.

Erst wurden die Gravitationswellen beobachtet. Dabei kamen erstmals die Observatorien LIGO und Virgo auf der Erde zusammen zum Einsatz. Sekunden später maß das Fermi-Teleskop im Orbit Gammastrahlen. Ein paar Stunden später beobachteten Hubble und andere Observatorien Licht im ganzen elektromagnetischen Spektrum.

Dieses Erklärvideo zeigt den wahrscheinlichen Ablauf. Heiße Neutronensterne nähern sich auf spiralförmigen Bahnen. Dabei senden sie Gravitationswellen aus. Beim Verschmelzen bricht ein mächtiger Strahl hervor. Er stößt den kurzen Gammablitz aus. Dann werden Wolken ausgeworfen. Später folgt eine optische Art von Supernovae, die als Kilonova bezeichnet wird.

Erstmals passen die Entdeckungen zusammen. Sie bestätigen, dass LIGO-Ereignisse mit kurzen Gammablitzen einhergehen. Mächtige Verschmelzungen von Neutronensternen versorgten vermutlich das Universum mit vielen schweren Atomkernen. Dazu gehört Jod, das für Leben notwendig ist. Uran und Plutonium brauchen wir für Kernspaltung. Vielleicht habt ihr ein Andenken solcher Explosionen. Sie sind vermutlich auch die ursprüngliche Quelle von Gold.

Artikel von LIGO und LCO

Zur Originalseite

An der Quelle des Goldes

Zwei Himmelskörper sind vor einem dunklen Sternenhimmel dargestellt. Der obere ist dunkel mit goldenen Schlieren, der untere ist von einer strahlenden blauen Korona umgeben.

Illustrationscredit: Dana Berry, NASA

Woher kommt das Gold in eurem Schmuck? Das wissen wir nicht genau. Die durchschnittliche Menge an Gold im Sonnensystem ist anscheinend höher, als dass sie im frühen Universum, in Sternen und sogar bei typischen Supernovaexplosionen entstanden sein könnte.

Viele glauben, neutronenreiche schwere Elemente wie Gold sind am leichtesten bei den seltenen neutronenreichen Explosionen entstanden. So ein Ereignis wäre eine Kollision von Neutronensternen.

Diese künstlerische Illustration zeigt, wie zwei Neutronensterne auf einer spiralförmigen Bahn einander näher kommen. Kurz danach kollidieren sie. Kollisionen von Neutronensternen sind vielleicht der Ursprung kurzlebiger Gammastrahlenausbrüche. Vielleicht habt ihr schon ein Andenken an eine der mächtigsten Explosionen im Universum.

Hinweis: Das nächste APOD kommt während der Bekanntgabe einer NSF-Entdeckung mit Pressekonferenz am Montag.

Zur Originalseite

Sharpless 249 und der Quallennebel

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Eric Coles

Beschreibung: Der normalerweise blasse, schwer fassbare Quallennebel wurde auf diesem faszinierenden Teleskopmosaik festgehalten. Die Szene wird unten vom Stern Eta Geminorum am Fuß der himmlischen Zwillinge verankert, der Quallennebel ist der hellere gewölbte Emissionsnebel mit Tentakeln, die unter der Mitte nach links baumeln.

Die kosmische Qualle ist Teil des blasenförmigen Supernovaüberrestes IC 443, die expandierende Trümmerwolke eines explodierten massereichen Sterns. Das Licht der Explosion erreichte den Planeten Erde erstmals vor 30.000 Jahren. Wie sein Cousin in astrophysikalischen Gewässern – der Krebsnebelsupernovaüberrest – enthält auch der Quallennebel bekanntlich einen Neutronenstern, das ist der Überrest eines kollabierten Sternkerns. Ein Emissionsnebel, der als Sharpless 249 katalogisiert ist, füllt das Feld rechts oben.

Der Quallennebel ist ungefähr 5000 Lichtjahre entfernt. In dieser Distanz wäre dieses Schmalband-Kompositbild, das in Farben der Hubblepalette präsentiert wird, etwa 300 Lichtjahre breit.

Ö1-Nachtquartier:Das Jahr in den Sternen“ mit Maria Pflug-Hofmayr
Zur Originalseite

Der wirbelnde Kern im Krebsnebel

Hinter weißlichen Nebeln leuchten rote Fasern und blaue Nebel. Rechts neben der Mitte sind spiralförmige Wirbel zu sehen. Dort befindet sich auch der Krebspulsar, der nach der Explosion eines massereichen Sterns übrig blieb.

Bildcredit: NASA, ESADanksagung: J. Hester (ASU), M. Weisskopf (NASA / GSFC)

Im Krebsnebel rotiert ein magnetischer Neutronenstern. Der Krebspulsar ist so groß wie eine Stadt und dreht sich 30 Mal pro Sekunde. Dieses fantastische Hubble-Bild zeigt das Innere des Nebels. Darauf ist er der rechte der beiden hellen Sterne knapp unter dem zentralen Wirbel.

Das spektakuläre Bild ist etwa drei Lichtjahre breit. Es zeigt leuchtendes Gas, Hohlräume und wirbelnde Fasern. Der Wirbel ist in ein gespenstisches blaues Licht getaucht. Das blaue Leuchten ist Strahlung in sichtbarem Licht. Es stammt von Elektronen, die in einem starken Magnetfeld spiralförmig wirbeln. Dabei erreichen sie fast Lichtgeschwindigkeit. Wie ein kosmischer Dynamo liefert der Pulsar die Energie für das Leuchten im Nebel. Das treibt eine Stoßwelle durch das umgebende Material und beschleunigt die Elektronen auf ihren spiralförmigen Bahnen.

Der rotierende Pulsar hat mehr Masse als die Sonne und ist so dicht wie ein Atomkern. Er ist der kollabierte Kern eines massereichen Sterns, der explodierte. Der Krebsnebel ist der Rest der äußeren Sternenhülle und dehnt sich aus. Die Explosion der Supernova wurde auf dem Planeten Erde im Jahr 1054 beobachtet.

Zur Originalseite