Hinter Beteigeuze

Der rote Überriesenstern Beteigeuze im Sternbild Orion ist so hell, dass er auch in kleineren Teleskopen größer als nur ein Lichtpunkt erscheint.

Bildcredit und Bildrechte: Adam Block, Steward-Observatorium, Universität von Arizona

Beschreibung: Was liegt hinter Beteigeuze? Der rote Überriesenstern Beteigeuze ist einer der helleren und ungewöhnlicheren Sterne am Himmel, man findet ihn im berühmten Sternbild Orion. Beteigeuze ist uns viel näher als die meisten der anderen hellen Sterne dieses Sternbildes, und er liegt auch vor dem großen Orion-Molekülwolkenkomplex.

In Zahlen ausgedrückt braucht das Licht von Beteigeuze ungefähr 700 Jahre, um uns zu erreichen. Das Licht des Orionnebels mit dem Staub und Gas, das ihn umgibt, braucht hingegen zirka 1300 Jahre, um zu uns zu gelangen. Alle Teleskope – bis auf die größten – sehen Beteigeuze nur als Lichtpunkt, aber dieser Punkt ist so hell, dass er durch die Unschärfe, die im Teleskop und in der Erdatmosphäre entsteht, ausgedehnt erscheint.

Auf diesem lang belichteten Bild sieht man Tausende Hintergrundsterne in unserer Milchstraße hinter Beteigeuze sowie den dunklen Staub der Orion-Molekülwolke und einige rot leuchtende Emissionen von Wasserstoff im Außenbereich des weiter entfernten Lambda-Orionis-Ringes.

Beteigeuze wurde nun nach seiner ungewöhnlich blassen Erscheinung in den letzten sechs Monate wieder heller, doch man erwartet weiterhin, dass er irgendwann im Laufe der nächsten (ungefähr) 100.000 Jahre als spektakuläre Supernova explodiert.

Zur Originalseite

LDN 1471 – eine vom Wind geformte Sternenhöhle

Die Höhle LDN 1471 mit einem Protostern, der ein Herbig-Haro-Objekt formt, wurde vom Weltraumteleskop Spitzer entdeckt.

Bildcredit: Hubble, NASA, ESA; Bearbeitung und Lizenz: Judy Schmidt

Wie entstand diese ungewöhnliche Parabel? Die beleuchtete Höhle ist als LDN 1471 bekannt. Sie entstand um einem neu entstehenden Stern. Er ist das helle Licht am Scheitelpunkt der Parabel. Der Protostern erzeugt einen stellaren Ausfluss. Dieser tritt in Wechselwirkung mit dem umgebenden Material der Perseus-Molekülwolke und hellt sie auf.

Wir sehen nur eine Seite des Hohlraums. Die andere Seite ist vom dunklen Staub verdeckt. Die Parabolform entsteht durch die Aufweitung der Höhle im Lauf der Zeit durch Sternenwind. An beiden Seiten des Protosterns sind zwei weitere Strukturen zu sehen. Sie sind als Herbig-Haro-Objekte bekannt. Herbig-Haro-Objekte entstehen durch die Wechselwirkung des Ausstroms mit der umgebenden Materie. Wie die Schlieren in den Wänden des Hohlraums entstehen, ist noch nicht bekannt.

Dieses Bild wurde mit dem Weltraumteleskop Hubble der NASA und ESA aufgenommen. Ursprünglich wurde es vom Weltraumteleskop Spitzer entdeckt.

Zur Originalseite

Von den Plejaden zur Eridanus-Schleife

Um die Sternhaufen Plejaden und Hyaden sowie im Sternbild Eridanus liegt jede Menge Staub; Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Hirofumi Okubo

Beschreibung: Wenn Sie lange genug auf einen interessanten Fleck am Himmel starren, sieht er dann anders aus? Im Fall der Sternhaufen Plejaden und Hyaden sowie der Regionen in ihrer Umgebung lautet die Antwort: ja, ziemlich anders. Langzeitbelichtungen mit Kamera zeigen ein verworrenes Netzwerk aus verwobenem interstellarem Staub und Gas, das zuvor unsichtbar war – nicht nur für das Auge, sondern auch auf kurz belichteten Bildern. Auf diesem weiträumigen, detailreichen Mosaik tritt der Staub eindrucksvoll hervor.

Der vertraute Plejaden-Sternhaufen ist der blaue Fleck im oberen Teil des Bildes. Blau ist die Farbe der massereichsten Sterne der Plejaden, ihr charakteristisches Licht wird vom feinen Staub in der Nähe reflektiert. Links oben befindet sich der Sternhaufen der Hyaden, der den hellen, orangefarbenen Stern Aldebaran im Vordergrund umgibt. Rot leuchtende Emissionsnebel betonen den unteren Teil des Bildes mit dem senkrechten, gekrümmten roten Band, das als Eridanus-Schleife bekannt ist. Die überall vorhandenen Staubwolken erscheinen großteils hellbraun und sind mit nicht dazugehörigen Sternen gesprenkelt.

Fast Hyperraum: APOD-Zufallsgenerator
Zur Originalseite

Der Pferdekopfnebel

Vor einem Hintergrund aus rot leuchtenden Nebeln zeichnet sich ein dunkler Nebel ab, der die Form eines Pferdekopfes hat.

Bildcredit und Bildrechte: Mark Hanson und Martin Pugh, SSRO, PROMPT, CTIO, NSF

Beschreibung: Eine prächtige interstellare Staubwolke, die von Sternwinden und Strahlung geformt wurde, hat zufällig diese erkennbare Form angenommen. Sie trägt passenderweise den Namen Pferdekopfnebel und ist ungefähr 1500 Lichtjahre entfernt in den gewaltigen Orionwolkenkomplex eingebettet.

Die dunkle Wolke ist ungefähr fünf Lichtjahre „hoch“ und als Barnard 33 katalogisiert. Man sieht sie nur, weil ihr undurchsichtiger Staub als Silhouette vor dem leuchtenden roten Emissionsnebel IC 434 liegt. In der dunklen Wolke entstehen Sterne. Der blaue Reflexionsnebel NGC 2023, der einen heißen, jungen Stern umgibt, bildet im Vollbild links unten einen Kontrast dazu.

Dieses prächtige Farbbild kombiniert Schmalband- und Breitbandbilder, die mit mehreren unterschiedlichen Teleskopen aufgenommen wurden.

Zur Originalseite

Junge Sterne in der Rho-Ophiuchi-Wolke

Nebelige Wolken in braunen und dunkeltürkisen Farben füllen das Bild, in der Mitte leuchtet ein hellbeiger Nebel, rechts unten ein roter.

Bildcredit: NASA, JPL-Caltech, WISE

Beschreibung: Wie entstehen Sterne? Um das herauszufinden, schufen Astronomen mit dem Wide-field Infrared Survey Explorer (WISE) diese reizende Falschfarben-Komposition in Infrarotwellenlängen mit Staubwolken und eingebetteten, neu entstandenen Sternen. Die kosmische Leinwand zeigt eine der nächstliegenden Sternbildungsregionen, es sind Teile des Wolkenkomplexes um Rho Ophiuchi, der ungefähr 400 Lichtjahre entfernt am südlichen Rand des aussprechbaren Sternbildes Ophiuchus (Schlangenträger) liegt.

Junge Sterne, die in einer großen Wolke aus kaltem molekularem Wasserstoff entstanden sind, heizen den umgebenden Staub auf und sorgen für das infrarote Leuchten. Sterne im Entstehungsprozess, die als junge stellare Objekte oder YSOs bezeichnet werden, sind in die kompakten rosaroten Nebel eingebettet, die man hier sieht. Vor den neugierigen Augen optischer Teleskope sind sie jedoch verborgen.

Eine Untersuchung der Region in durchdringendem Infrarotlicht brachte entstehende und neu entstandene Sterne zum Vorschein, deren Durchschnittsalter auf etwa 300.000 Jahre geschätzt wird. Verglichen mit dem Alter der Sonne von 5 Milliarden Jahren ist das extrem jung. Der auffällige rötliche Nebel rechts unten, der den Stern Sigma Scorpii umgibt, ist ein Reflexionsnebel aus Staub, der Sternenlicht streut.

Diese Ansicht von WISE wurde 2012 veröffentlicht. Sie umfasst an die 2 Grad und bedeckt in der geschätzten Entfernung der Rho-Ophiuchi-Wolke ungefähr 14 Lichtjahre.

Zur Originalseite

Im Innern des Flammennebels

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Optisch: DSS; Infrarot: NASA/JPL-Caltech; Röntgen: NASA/CXC/PSU/ K.Getman, E.Feigelson, M.Kuhn und das MYStIX-Team

Beschreibung: Dieses Bild in sichtbarem Licht blickt zu einer staubigen, dicht gedrängten Sternbildungsregion im Gürtel des Orion, die etwa 1400 Lichtjahre entfernt ist, darin tritt der Flammennebel markant hervor. Doch Röntgendaten des Chandra-Observatoriums und Infrarotbilder des Weltraumteleskops Spitzer führen Sie ins Innere des leuchtenden Gases und der undurchsichtigen Staubwolken.

Schieben Sie Ihren Mauspfeil (oder klicken Sie auf das Bild), dann sehen Sie viele Sterne des vor kurzer Zeit entstandenen, eingebetteten Haufens NGC 2024, der zwischen 200.000 und 1,5 Millionen Jahre jung ist. Das darübergelegte Röntgen-Infrarot Kompositbild zeigt eine etwa 15 Lichtjahre breite Region im Zentrum des Flammennebels.

Die Rönten-Infrarot-Daten lassen vermuten, dass die jüngsten Sterne in der Mitte des Flammennebelhaufens konzentriert sind. Das wäre das Gegenteil des einfachsten Entstehungsmodells für das Sternbildungsgebiet, dem zufolge die Sternbildung im dichteren Zentrum eines Molekülwolkenkerns beginnt. Das Ergebnis erfordert ein komplexeres Modell; vielleicht dauert die Sternbildung im Zentrum länger an, oder ältere Sterne werden bei Verschmelzungen von Unterhaufen aus dem Zentrum ausgestoßen.

Zur Originalseite

Dunkles Seepferdchen in Kepheus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Sergio Kaminsky

Beschreibung: Diese prägnante Form ist mehrere Lichtjahre lang und als Seepferdchennebel bekannt. Sie zeichnet sich als Silhouette vor einem reichen, leuchtstarken Hintergrund aus Sternen ab.

Die staubigen, undurchsichtigen Wolken befinden sich im nördlichen königlichen Sternbild Kepheus. Sie sind Teil einer Molekülwolke in der Milchstraße, die etwa 1200 Lichtjahre entfernt ist. Unter anderem sind sie als Barnard 150 (B150) gelistet und gehören somit zu einer von 182 dunklen Markierungen am Himmel, die Anfang des 20. Jahrhunderts von dem Astronomen E. E. Barnard katalogisiert wurden. Im Inneren entstehen aus kollabierenden Kernen Ansammlungen von Sternen mit geringer Masse, die nur in langen Infrarot-Wellenlängen sichtbar sind. Doch diese hübsche galaktische Himmelslandschaft zeigt auch farbenprächtige Sterne in Kepheus.

Zur Originalseite

In der Wolfshöhle

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Bildrechte: Charlie Bracken, Mladen Dugec, Max Whitby

Beschreibung: Der rätselhafte, sehr blasse blaue Reflexionsnebel ist in Katalogen als VdB 152 oder Ced 201 gelistet. Er liegt an der Spitze des langen Dunkelnebels Barnard 175 in einem staubigen Komplex, der auch Wolfshöhle genannt wurde. Die kosmischen Erscheinungen in der Mitte dieser detailreichen Weitwinkel-Teleskopansicht sind fast 1400 Lichtjahre entfernt, sie liegen in der nördlichen Milchstraße im königlichen Sternbild Kepheus.

Taschen aus interstellarem Staub in der Region am Rand einer großen Molekülwolke blockieren Licht von Sternen im Hintergrund oder streuen das Licht des eingebetteten hellen Sterns, was dem Nebel seine einzigartige blaue Farbe verleiht. Vermutlich sorgt auch das Ultraviolettlicht des Sterns für ein schwaches rötliches Leuchten im Staub des Nebels. Zwar entstehen Sterne in Molekülwolken, doch dieser Stern ist anscheinend zufällig in die Region gewandert, da seine gemessene Geschwindigkeit im Weltraum stark von der Geschwindigkeit der Wolke abweicht.

LDN 1221, ein weiterer dichter, undurchsichtiger Dunkelnebel, ist rechts oben im Bild leicht erkennbar. Unter der Mitte liegt der farbenprächtigere planetarische Nebel Dengel-Hartl 5. In der Diagonale von rechts unten nach links oben sind vor dem staubreichen Komplex im Kepheus auch die blassen, rötlichen Emissionen eines urzeitlichen Supernovaüberrestes aufzuspüren.

Zur Originalseite