Simulation: Zwei Schwarze Löcher verschmelzen

Illustrationscredit: Projekt zur Simulation extremer Raumzeiten

Entspannen Sie sich und beobachten Sie, wie zwei schwarze Löcher verschmelzen. Inspiriert von der ersten direkten Entdeckung von Gravitationswellen im Jahr 2015, wird dieses Simulationsvideo in Zeitlupe abgespielt, würde aber in Echtzeit etwa eine Drittelsekunde dauern. Auf einer kosmischen Bühne sind die schwarzen Löcher vor Sternen, Gas und Staub platziert. Ihre extreme Schwerkraft bündelt das Licht hinter ihnen zu Einsteinringen, während sie sich spiralförmig annähern und schließlich zu einem einzigen verschmelzen.

Die sonst unsichtbaren Gravitationswellen, die beim schnellen Zusammenwachsen der massiven Objekte entstehen, bewirken, dass das sichtbare Bild innerhalb und außerhalb der Einsteinringe auch nach der Verschmelzung der schwarzen Löcher noch wackelt und schwappt. Die von LIGO entdeckten Gravitationswellen mit der Bezeichnung GW150914 stehen im Einklang mit der Verschmelzung von 2 schwarzen Löchern mit 36-facher und 31-facher Sonnenmasse in einer Entfernung von 1,3 Milliarden Lichtjahren. Das endgültige Schwarze Loch hat die 63-fache Masse der Sonne, wobei die restlichen 3 Sonnenmassen in Energie umgewandelt werden, die in Gravitationswellen abgestrahlt wird.

Heutiger Ereignishorizont: NASA-Woche der Schwarzen Löcher!

Zur Originalseite

Nachricht aus dem Gravitationsuniversum

Die Illustration zeigt die Strahlen von Pulsaren im Bild und links oben ein Paar verschmelzender schwarzer Löcher. Über die Bildmitte verteilt sich ein Gitter, das die Verformung der Raumzeit durch vorbeiziehende Gravitationswellen darstellt.

Illustrationscredit: NANOGrav Physics Frontier Center; Text: Natalia Lewandowska (SUNY Oswego)

Das Nordamerikanische Nanohertz-Observatorium für Gravitationswellen (NANOGrav) beobachtet mit sehr großen Radioteleskopen 68 Pulsare. NANOGrav fand Hinweise auf einen Hintergrund an Gravitationswellen (GW), als es leichte Verschiebungen der Ankunftszeiten von Pulsen sorgfältig maß. Diese Verschiebungen korrelieren zwischen einzelnen Pulsaren so, dass ihre Ursache wahrscheinlich GW sind. Dieser GW-Hintergrund entsteht wahrscheinlich durch Hunderttausende oder sogar Millionen sehr massereicher binärer Schwarzer Löcher.

Teams in Europa, Asien und Australien veröffentlichten heute unabhängig voneinander ihre Ergebnisse. Zuvor fanden die Detektoren LIGO und Virgo GW mit höheren Frequenzen, die von den Verschmelzungen einzelner Paare massereicher Objekte stammten, die umeinander kreisen, zum Beispiel von Schwarzen Löchern mit stellarer Masse.

Diese Illustration zeigt das Ergebnis, das die Raumzeit erschüttert, anhand von zwei umeinander kreisenden, sehr massereichen Schwarzen Löchern und mehreren Pulsaren, die anscheinend leichte Zeitverschiebungen aufweisen. Der Einfluss dieser GW auf die Raumzeit wird durch ein verzerrtes Gitter dargestellt.

Offene Wissenschaft: 3000+ Codes in der Quellcodebibliothek für Astrophysik

Zur Originalseite

Neunzig Gravitationswellenspektrogramme und es werden mehr

Spektrogramme von 90 Gravitationswellen-Ereignissen, die mit den Detektoren von LIGO (USA), VIRGO (Europa) und KAGRA (Japan) beobachtet wurden.

Bildcredit: NSF, LIGO, VIRGO, KAGRA, Georgia Tech, Vanderbilt U.; Graphik: Sudarshan Ghonge und Karan Jani

Beschreibung: Jedes Mal, wenn zwei massereiche Schwarze Löcher kollidieren, senden sie ein lautes Zirpen in Form von Gravitationswellen ins Universum. Erst seit sieben Jahren besitzt die Menschheit die Technologie, um dieses ungewöhnliche Zirpen zu hören, aber wir haben seither in den ersten drei Beobachtungsläufen schon etwa 90 davon gehört.

Oben seht ihr die Spektrogramme – Diagramme der Gravitationswellenfrequenz im Zeitverlauf – dieser 90 Ereignisse, die von den riesigen Detektoren von LIGO (USA), VIRGO (Europa) und KAGRA (Japan) beobachtet wurden. Je mehr Energie einer Kollision auf der Erde ankommt, desto heller erscheint diese Kollision auf der Grafik.

Neben vielen wissenschaftlichen Erfolgen bietet dieses Zirpen von Gravitationswellen der Menschheit eine beispiellose Bestandsaufnahme von Schwarzen Löchern und Neutronensternen, aber auch eine neue Methode, um die Wachstumsgeschwindigkeit unseres Universums zu messen.

Für Anfang Dezember 2022 ist ein vierter Gravitationswellen-Beobachtungsdurchlauf mit erhöhter Genauigkeit geplant.

Zur Originalseite

GW200115: Simulation der Verschmelzung eines Schwarzen Lochs mit einem Neutronenstern


Videocredit: Simulation: S.V. Chaurasia (Stockholm U.), T. Dietrich (Potsdam U. & MPIGP); Visualisierung: T. Dietrich (Potsdam U. und MPIGP), N. Fischer, S. Ossokine, H. Pfeiffer (MPIGP)

Beschreibung: Was passiert, wenn ein Schwarzes Loch einen Neutronenstern vernichtet? Analysen lassen den Schluss zu, dass so ein Geschehen das Gravitationswellenereignis GW200115 verursachte, das im Januar 2020 von den Observatorien LIGO und Virgo beobachtet wurde.

Um das ungewöhnliche Ereignis besser zu verstehen, wurde diese Visualisierung aus einer Computersimulation erstellt. Zu Beginn des Visualisierungsvideos kreisen das Schwarze Loch (etwa 6 Sonnenmassen) und der Neutronenstern (etwa 1,5 Sonnenmassen) umeinander und senden dabei eine immer größer werdende Menge an Gravitationsstrahlung aus. Das malerische Muster der Gravitationswellen-Emission ist in Blau dargestellt.

Das Duo nähert sich einander immer schneller auf spiralförmigen Bahnen, bis der Neutronenstern vollständig vom Schwarzen Loch verschlungen wird. Da der Neutronenstern während der Kollision nicht auseinanderbricht, entkommt nur wenig Licht – das passt zum Fehlen eines beobachteten optischen Gegenstücks. Das übrig gebliebene Schwarze Loch schwingt kurz. Sobald das Schwingen abklingt, verebben auch die ausgesendeten Gravitationswellen.

Das 30-sekündige Zeitraffervideo ist scheinbar kurz, doch in Wirklichkeit dauert es etwa 1000-mal so lang wie das echte Verschmelzungsereignis.

Astrophysik: mehr als 2500 Codes in der Astrophysik-Quellcodebibliothek
Zur Originalseite

Wenn Schwarze Löcher kollidieren


Videocredit und -rechte: Simulating Extreme Spacetimes Collaboration

Beschreibung: Was passiert, wenn zwei Schwarze Löcher kollidieren? Dieses extreme Szenario passiert in den Zentren vieler verschmelzender Galaxien und in Mehrfachsternsystemen. Dieses Video zeigt eine Computeranimation der Endphase so einer Verschmelzung und veranschaulicht die Gravitationslinseneffekte, die am Sternenfeld im Hintergrund auftreten würden.

Die schwarzen Regionen markieren die Ereignishorizonte des dynamischen Duos, während ein darum herum verlaufender Ring aus sich verschiebenden Hintergrundsternen die Position ihres gemeinsamen Einsteinrings anzeigt. Von allen Hintergrundsternen sind Bilder nicht nur außerhalb dieses Einsteinrings sichtbar, sondern jeweils auch ein oder mehrere Begleitbilder im Inneren.

Am Ende verschmelzen die beiden Schwarzen Löcher. Heute wissen wir, dass das Endstadium so einer Verschmelzung heftige Gravitationsstrahlung erzeugt, die eine neue Sichtweise auf unser Universum bietet.

Diese Woche ist Schwarze-Löcher-Woche der NASA

Zur Originalseite

Fünfzig Gravitationswellen-Ereignisse bildlich dargestellt

Diese Illustration veranschaulicht die Massen der ersten 50 Ereignisse.

Bildcredit: LIGOVirgo-Arbeitsgruppe, Frank Elavsky, Aaron Geller, Northwestern U.

Beschreibung: Mehr als 50 Gravitationswellenereignisse wurden mittlerweile entdeckt. Diese Ereignisse markieren die fernen, gewaltigen Kollisionen von entweder zwei schwarzen Löchern oder einem schwarzen Loch mit einem Neutronenstern oder von zwei Neutronensternen. Die meisten dieser 50 Ereignisse wurden 2019 mit den LIGO-Gravitationswellendetektoren in den USA und dem VIRGO-Detektor in Europa entdeckt.

Diese Illustration veranschaulicht die Massen der ersten 50 Ereignisse. Blaue Punkte zeigen schwarze Löcher mit höherer Masse, während orangefarbene Punkte Neutronensterne mit geringerer Masse kennzeichnen. Astrophysikerinnen und Astrophysiker sind derzeit jedoch nicht sicher, was die Natur von Ereignissen betrifft, die weiß markiert sind, und deren Massen anscheinend in der Mitte liegen – zwischen zwei und fünf Sonnenmassen.

Am Nachthimmel in sichtbarem Licht überwiegen nahe helle Sterne, die seit Anbeginn der Menschheit bekannt sind. Im Gegensatz dazu überwiegen am Gravitationswellenhimmel ferne, dunkle schwarze Löcher, die seit weniger als fünf Jahre bekannt sind.

Dieser Unterschied ist aufschlussreich: Wenn man den Gravitationswellenhimmel versteht, verändert schon das allein das Wissen der Menschheit – nicht nur über Sterngeburt und -tod im ganzen Universum, sondern sogar über die Eigenschaften des Universums selbst.

Zur Originalseite

GW190521: Unerwartete Schwarze Löcher kollidieren

Das Gravitationswellenereignis GW190521 war die Verschmelzung der massereichsten schwarzen Löcher, die bisher von LIGO und Virgo beobachtet wurden.

Illustrationscredit: Raúl Rubio (Virgo Valencia Group, The Virgo Collaboration)

Beschreibung: Wie entstehen schwarze Löcher wie dieses? Die beiden schwarzen Löcher, die auf spiralförmigen Bahnen zusammenstießen und das Gravitationswellenereignis GW190521 auslösten, waren nicht nur die massereichsten schwarzen Löcher, die LIGO und Virgo bisher beobachteten. Ihre Massen – 66 und 85 Sonnenmassen – waren außerdem beispiellos und unerwartet.

Man weiß, dass schwarze Löcher mit geringerer Masse – weniger als 65 Sonnenmassen – bei Supernovaexplosionen entstehen. Umgekehrt geht man davon aus, dass schwarze Löcher mit höherer Masse – mehr als ungefähr 135 Sonnenmassen – bei der Implosion sehr massereicher Sterne entstehen, nachdem diese ihre für die Kernfusion verantwortlichen Elemente, die der Gravitation entgegenwirken, aufgebraucht haben.

Wie solche schwarzen Löcher mit dazwischen liegenden Massen entstanden, ist noch unbekannt. Eine Hypothese besagt, dass sie durch aufeinanderfolgende Kollisionen zwischen Sternen und schwarzen Löchern in dichten Sternhaufen entstehen. Diese Illustration zeigt schwarze Löcher kurz vor der Kollision, die Pfeile markieren ihre Rotationsachsen. Die spiralförmigen Wellen auf der Illustration zeigen die Entstehung von Gravitationsstrahlung an, während die umgebenden Sterne auf die Möglichkeit hinweisen, dass sich die Verschmelzung in einem Sternhaufen ereignete.

Das Verschmelzungsereignis schwarzer Löcher mit der Bezeichnung GW190521 wurde letztes Jahr beobachtet, es stammt aber aus einer Zeit, als das Universum erst etwa halb so alt war wie heute (z ~ 0.8). Es ist das fernste Ereignis, das je beobachtet wurde, sogar innerhalb der Messtoleranz.

Astrophysiker*innen: Stöbern Sie in mehr als 2200 Codes der Astrophysics Source Code Library
Zur Originalseite

Sicherheitsvideo für ein Schwarzes Loch


Videocredit: GSFC der NASA, SVS; Musik: Prim and Proper von Universal Production Music

Beschreibung: Wenn Sie ein kleines einäugiges Monster wären, würden Sie ein Schwarzes Loch besuchen wollen? Nun, das im Video möchte eins besuchen – aber sollte es? Eigentlich nicht, aber da unsere kleine Freundin auf die Reise besteht, informiert das Video, was Schwarze Löcher eigentlich sind, und wie man den Besuch so sicher wie möglich gestalten kann.

Schwarze Löcher sind Materieklumpen, die so dicht sind, dass Licht nicht entkommen kann. In jüngster Zeit fand man durch die Messung ungewöhnlicher Gravitationswellen heraus, dass Paare Schwarzer Löcher mit jeweils mehreren Sonnenmassen verschmelzen. Die Regionen um sehr massereiche Schwarze Löcher in den Zentren von Galaxien können heller werden, wenn Sterne, die ihnen zu nahe kommen, geschreddert werden.

Das erdnächste Schwarze Loch ist V616 Mon, es ist etwa 3300 Lichtjahre von uns entfernt. Als beste Möglichkeit für unsere Monsterfreundin, sicher zu reisen, empfiehlt das Video, ihm nicht zu nahe zu kommen.

Zur Originalseite