Lyriden-Meteore aus dem Sternbild Leier

Sternschnuppen des Meteorstroms der Lyriden aus dem Kometen Thatcher über der Talsperre Seč in Tschechien.

Bildcredit und Bildrechte: Petr Horálek

Beschreibung: Woher kommen all diese Meteore? Was die Richtung am Himmel betrifft, lautet die pointierte Antwort: aus dem Sternbild der kleinen Harfe (Lyra). Daher sind die Meteore des berühmte Stroms, der jeden April seinen Höhepunkt erreicht, als die Lyriden bekannt – sie scheinen alle von einem Radianten in der Leier auszuströmen.

Was jedoch den Ursprungskörper anbelangt, stammen die sandkorngroßen Teilchen des Lyriden-Meteorstroms vom Kometen Thatcher. Der Komet folgt einer klar definierten Bahn um unsere Sonne, und jener Teil der Bahn, der in der Nähe der Erde liegt, befindet sich vor dem Sternbild Leier. Wenn also die Erde diese Bahn kreuzt, erscheint der Radiant – der Ausgangspunkt der fallenden Bruchstücke – in der Leier.

Dieses Kompositbild zeigt mehr als 33 Meteore (finden Sie alle?) des Lyriden-Meteorschauers letzten Monat, darunter mehrere helle Sternschnuppen, die über das Ufer der Talsperre Seč in Tschechien strömten. Man sieht auch die hellen Sterne Wega und Atair, den Planeten Jupiter und das zentrale Band unserer Milchstraße.

Interessante APOD-Einreichungen: Lyriden-Meteorstrom 2020
Zur Originalseite

Ringe um den Ringnebel

In der Mitte leuchtet der bekannte Ringnebel mit blauem Inneren, umgeben von einem gelblichen Staubring. Außen herum sind rosettenartige Staubringe angeordnet, die man normalerweise auf Bildern des Ringnebels nicht sieht.

Bildcredit: Hubble, Large Binocular Telescope, Subaru-Teleskop; Komposition und Bildrechte: Robert Gendler

Beschreibung: Es gibt noch viel mehr im vertrauten Ringnebel (M57), als man mit einem kleinen Teleskop sieht. Der gut erkennbare zentrale Ring ist etwa ein Lichtjahr groß, doch diese bemerkenswert detailreiche Aufnahme – ein Gemeinschaftsprojekt, das Daten dreier großer Teleskope kombiniert – erforscht die ausschweifenden Fasern aus leuchtendem Gas, die sich viel weiter vom Zentralstern des Nebels ausdehnen.

Dieses außergewöhnliche Kompositbild enthält ein schmalbandiges Wasserstoffbild sowie aus Emissionen im sichtbaren Licht und im Infrarotlicht. Natürlich stammt das leuchtende Material bei diesem gut untersuchten Beispiel eines planetarischen Nebels nicht von Planeten. Die gasförmige Hülle entsteht vielmehr aus den abgestoßenen äußeren Schichten eines sterbenden sonnenähnlichen Sterns. Der Ringnebel ist etwa 2000 Lichtjahre entfernt und steht im musikalischen Sternbild Leier.

Zur Originalseite

Der Ringnebel M57

Bildfüllend ist der Ringnebel in der Leier dargestellt. Der Ring ist außen leicht oval, das Innere ist rund. Sein Inneres leuchtet blau, der äußere Rand ist rot. Mitten im Nebel ist der Stern, aus dem der Nebel entstand, er ist ein winziger Lichtpunkt.

Bildcredit: NASA, ESA und Hubble-Vermächtnis (STScI / AURA)- ESA / Hubble-Arbeitsgemeinschaft

Nach den Saturnringen ist der Ringnebel (M57) in der Leier der vielleicht berühmteste Himmelskreis. Seine klassische Erscheinung ist nach heutigem Verständnis der Perspektive geschuldet.

Die neueste Kartierung der wachsenden 3-D-Struktur im Nebel basiert zum Teil auf diesem klaren Hubblebild. Sie lässt vermuten, dass der Nebel ein relativ dichter, krapfenähnlicher Ring ist. Um die Mitte ist er in eine Wolke aus leuchtendem Gas gehüllt. Sie hat die Form eines Footballs. Von der Erde aus blickt man die Längsachse des Footballs entlang. Der Blick fällt von oben auf den Ring.

Die leuchtende Materie dieses gut untersuchten planetarischen Nebels stammt nicht von Planeten, sondern die gasförmige Hülle besteht aus den abgestoßenen äußeren Schichten eines vergehenden sonnenähnlichen Sterns. Es ist der winzige Nadelstich aus Licht in der Mitte des Nebels.

Das intensive Ultraviolettlicht des heißen Zentralsterns ionisiert die Atome im Gas. Die blaue Farbe in der Bildmitte stammt von ionisiertem Helium. Der Farbton Cyan am inneren Ringrand ist das Licht von angeregtem Wasserstoff und Sauerstoff. Die rötliche Farbe des äußeren Rings stammt von Stickstoff und Schwefel.

Der Ringnebel ist etwa ein Lichtjahr groß und 2000 Lichtjahre entfernt.

Zur Originalseite

Galaxienkollision in NGC 6745

Die Spiralgalaxie mitten im Bild hat mehrere nahe Begegnungen und Kollisionen hinter sich und wirkt stark verzerrt.

Bildcredit: NASA, ESA und das Hubble-Vermächtnisteam (STScI/AURA)-ESA/Hubble-Zusammenarbeit; Dank an Roger Lynds (KPNO/NOAO) et al.

Normalerweise sehen Galaxien nicht so aus. NGC 6745 zeigt, was passiert, wenn zwei Galaxien wenige Hunderte Millionen Jahre lang kollidieren. Knapp außerhalb der rechten unteren Ecke des digital geschärften Bildes befindet sich die kleinere Galaxie, die sich entfernt.

Die größere Galaxie war ursprünglich eine Spiralgalaxie. Sie ist jetzt jedoch beschädigt und sieht merkwürdig aus. Die Gravitation hat die Gestalt der Galaxien verzerrt. Wahrscheinlich sind in beiden Galaxien keine Sterne unmittelbar zusammengestoßen. Doch das Gas, der Staub und die sie umgebenden Magnetfelder wechselwirken direkt miteinander.

Aus der größeren Galaxie wurde rechts unten ein Knoten aus Gas herausgezogen, der begonnen hat, neue Sterne zu bilden. NGC 6745 ist etwa 80.000 Lichtjahre breit und ungefähr 200 Millionen Lichtjahre entfernt.

Zur Originalseite

M57: Der Ringnebel

Der Ringnebel im Bild ist von wenig vertrauten und bekannten roten Schleifen umgeben, die auf den meisten Bildern von M57 im Sternbild Leier nicht zu sehen sind.

Bildcredit: Kompositbilddaten: Subaru-Teleskop (NAOJ), Hubble-Vermächtnisarchiv; Bearbeitung und zusätzliche Bildbearbeitung: Robert Gendler

Neben Saturns Ringen ist der Ringnebel M57 der berühmteste Ring am Himmel. Seine klassische Erscheinung entsteht vermutlich durch die Perspektive: Unser Blick vom Planeten Erde zeigt in die Mitte einer tonnenförmigen Wolke aus leuchtendem Gas. Doch die ausgedehnten Gasschleifen auf diesem Kompositbild reichen weit über die bekannte Zentralregion des Ringnebels hinaus.

Das Komposit entstand aus Aufnahmen erdgebundener Teleskope, des Weltraumteleskops Hubble und Schmalband-Bilddaten von Subaru. M57 ist ein gut erforschtes Beispiel eines planetarischen Nebels. Auch bei ihm stammt die leuchtende Materie nicht von Planeten, sondern von gasförmigen Hüllen, die der vergehende sonnenähnliche Stern im Zentrum abgestoßen hat.

Das intensive Ultraviolettlicht des heißen Zentralsterns ionisiert die Atome im Gas. Ionisierte Sauerstoffatome erzeugen das grünliche Leuchten. Ionisierter Wasserstoff sorgt für das markante rötliche Licht.

Der Zentralring des Ringnebels hat einen Durchmesser von etwa einem Lichtjahr und ist 2000 Lichtjahre von uns entfernt. Er leuchtet im nördlichen Sternbild Leier und begleitet die Sternschnuppen heute Nacht.

Zur Originalseite

Der kälteste Braune Zwerg

Das Bild ist von blauen Lichtflecken übersät, in der Mitte ist ein kleiner Lichtpunkt mit einem Kreis markiert.

Bildcredit: NASA, JPL-Caltech, WISE

Beschreibung: Diese kosmische Momentaufnahme aus Bilddaten des NASA-Satelliten Wide-field Infrared Survey Explorer (WISE) zeigt eine Vielfalt blasser Sterne und ferner Galaxien im Sternbild Leier in Wellenlängen, die länger sind als sichtbares Licht. Aber das eingekreiste Objekt in der Mitte ist nicht wirklich ein Stern. Es ist als WISE 1828+2650 katalogisiert und nur 40 Lichtjahre von der Sonne entfernt. Derzeit ist es der kälteste Braune Zwerg, den wir kennen.

Ein Brauner Zwerg beginnt wie ein Stern mit dem gravitativen Kollaps dichter Gas- und Staubwolken, ist aber nicht massereich genug, um die Kerntemperatur und Dichte für eine Wasserstofffusion zu erreichen. Fusion ist die stabile Energiequelle eines Sterns. Stattdessen kühlt der gescheiterte Stern mit der Zeit aus und strahlt das meiste Licht in infraroten Wellenlängen ab. Interessanterweise sind Braune Zwerge nur etwa so groß wie der Planet Jupiter.

Wie kalt ist WISE 1828+2650? Während Braune Zwerge meist eine gemessene Oberflächentemperatur von bis zu 1400 Grad C (2600 Grad F) haben, hat dieser Braune Zwerg der Spektralklasse Y die geschätzte Temperatur eines warmen Raumes, also weniger als etwa 27 Grad Celsius.

Zur Originalseite

Das Sommerdreieck über Katonien

In einer urwaldartig grünen Landschaft leuchtet hinten durch eine Baumlücke die Milchstraße und der Sternenhimmel.

Bildcredit und Bildrechte: Juan Carlos Casado (TWAN)

Beschreibung: Seht ihr das Sommerdreieck? Es ist nicht schwierig, zu dieser Jahreszeit an Orten auf der Nordhalbkugel das berühmte Dreieck aus Sternen zu finden. Schaut einfach nach Sonnenuntergang hinauf, dann seht ihr drei der hellsten Sterne am Himmel, die ein fast gleichschenkeliges Dreieck bilden.

Vergleicht dann die Sterne mit den Himmelsbildern, die oben abgebildet sind, oder haltet ein Smartphone mit einem guten Beobachtungsprogramm hoch. Die drei Sterne des Sommerdreiecks sind Wega, Deneb und Altair. Oben seht ihr eine 360-Grad-Projektion des ganzen Himmels. Sie rahmt nicht nur das Sommerdreieck ein, sondern auch den großen Bogen der Milchstraße. Das Bild entstand letzte Woche an einem kleinen Fluss, der die historische Stadt Sant Llorenç de la Muga in Katalonien im Nordosten Spaniens eingrenzt.

Zur Originalseite

Projekt mit planetarischen Nebeln

Die Matrix aus 3x3 Bildern zeigt planetarische Nebel. Sie sind in

Credit und Bildrechte: J-P Metsävainio (Astro Anarchy)

Beschreibung: Planetarische Nebel werden von vergehenden, sonnenähnlichen Sternen abgestoßen. Sie entstehen in einer kurzen, aber prächtigen Schlussphase der Sternentwicklung. Die Gashüllen werden von einer extrem heißen Quelle in der Mitte ionisiert. Diese Quelle ist der schrumpfende Kern eines Sterns, dessen Kernbrennstoff zur Neige geht.

Ihre einfachen Symmetrien, die in der kosmischen Nacht leuchten, sind faszinierend. Sie regten dieses Plakatprojekt planetarischer Nebel an. Neun Planetarier sind zum Vergleich in einem 3×3-Raster abgebildet. Wer planetarische Nebel liebt, erkennt leicht die hellen Messierobjekte: den Hantelnebel M27, den kleinen Hantelnebel M76 und den Ringnebel M57. Auch der Katzenaugennebel NGC 6543 ist ziemlich markant.

Weniger bekannte Nebel sind der Medusanebel und der Käfernebel. Alle Bilder wurden aus detailreichen Schmalbanddaten erstellt und sind im gleichen Winkelmaß abgebildet, nämlich 20 Bogenminuten (1/3 Grad). Bei dieser Darstellung entspricht der graue Kreis der Winkelgröße des Vollmondes am Himmel.

Die planetarischen Nebel zeigen das Schicksal unserer Sonne, wenn in 5 Milliarden Jahren nicht mehr genug Kernbrennstoff in ihrem Inneren übrig ist.

Zur Originalseite