Arp 188 und der Schweif der Kaulquappe

Rechts oben ist eine Galaxie, die einen sehr dreidimensionalen Eindruck macht. Die Spiralarme erscheinen in zwei Ebenen gewickelt, nach rechts unten verläuft ein Strang aus Sternen und blauen Sternhaufen. Im Hintergrund sind zahlreiche Galaxien verteilt.

Bildcredit: Hubble-Vermächtnisarchiv, ESA, NASA; Bearbeitung: Faus Márquez (AAE)

Beschreibung: Warum hat diese Galaxie einen so langen Schweif? Diese tolle Ansicht basiert auf Bilddaten des Hubble-Vermächtnisrchivs. Sie zeigt die zerrissene Spiralgalaxie Arp 188, die Kaulquappengalaxie, vor einem dramatischen Hintergrund mit ferne Galaxien.

Die kosmische Kaulquappe liegt an die 420 Millionen Lichtjahre entfernt im nördlichen Sternbild Drache (Draco). Ihr markanter Schweif ist ungefähr 280.000 Lichtjahre lang und zeigt massereiche helle blaue Sternhaufen. Man erzählt, dass eine kompaktere Eindringlingsgalaxie vor Arp 188 kreuzte – auf dieser Ansicht von rechts nach links – und durch den Gravitationsanzug hinter der Kaulquappe herumgeschlungen wurde. Bei der nahen Begegnung zogen Gezeitenkräfte Sterne, Gas und Staub aus der Spiralgalaxie, aus denen der spektakuläre Schweif entstand. Die Eindringlingsgalaxie liegt ungefähr 300.000 Lichtjahre dahinter und ist durch die Spiralarme im Vordergrund rechts oben sichtbar.

Wie ihr irdischer Namensvetter verliert die Kaulquappengalaxie wahrscheinlich ihren Schweif, wenn sie älter wird, und die Sternhaufen im Schweif bilden kleinere Begleiter der großen Spiralgalaxie.

Zur Originalseite

Kosmische Kollision formt galaktischen Ring

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: Röntgen: Chandra (NASA, CXC, INAF, A. Wolter et al.); Optisch: Hubble (NASA, STScI)

Beschreibung: Wie kann eine Galaxie die Form eines Ringes annehmen? Der Rand der rechts abgebildeten blauen Galaxie ist eine unermessliche, ringähnliche Struktur mit einem Durchmesser von 150.000 Lichtjahren, die aus neu gebildeten, extrem hellen massereichen Sternen besteht. Diese Galaxie, AM 0644-741, ist als Ringgalaxie bekannt und entstand durch eine gewaltige Galaxienkollision.

Wenn Galaxien kollidieren, durchdringen sie einander – ihre Einzelsterne kommen selten miteinander in Kontakt. Die ringähnliche Form ist das Ergebnis der gravitativen Störung, die durch eine kleine eindringende Galaxie verursacht wurde, welche die große Galaxie durchdrang. Als das geschah, wurden interstellares Gas und Staub komprimiert. Das löste eine Sternbildungswelle aus, die vom Einschlagspunkt auswärts wanderte, wie Wellen, die sich auf der Oberfläche eines Teiches ausbreiten.

Links ist die wahrscheinliche Eindringlingsgalaxie zu sehen. Das Bild ist eine Kombination aus Daten der Weltraumteleskope Hubble (sichtbares Licht) und Chandra (Röntgen). Röntgenlicht ist rosarot dargestellt und bildet Orte ab, an denen energiereiche Schwarze Löcher oder Neutronensterne hausen, die wahrscheinlich kurz nach der Galaxienkollision entstanden sind.

Offene Wissenschaft: Stöbern Sie durch 1.800+ Codes der Astrophysics Source Code Library

Zur Originalseite

Der Kampf in NGC 3256

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit und Lizenz: NASA, ESA, Weltraumteleskop Hubble

Beschreibung: Eine ungewöhnlich helle Zentralregion, wirbelnde Staubbahnen und ausladende Gezeitenschweife prägen die merkwürdige Galaxie NGC 3256, die das Nachspiel einer wahrhaft kosmischen Kollision ist. Der 500 Millionen Jahre alte Kampf zweier getrennter Galaxien reicht auf diesem scharfen Hubblebild etwa 100.000 Lichtjahre weit.

Wenn zwei Galaxien kollidieren, passiert das selten mit Einzelsternen, sondern riesige galaktische Wolken aus Molekülgas und Staub wechselwirken. Dabei beginnen eindrucksvolle Sternbildungsausbrüche. Die beiden ursprünglich spiralförmigen Galaxien hatten vor diesem Galaxienkampf ähnliche Massen. Ihre Scheiben sind nicht mehr getrennt, und die beiden Galaxienkerne sind hinter undurchsichtigem Staub verborgen. Auf einer Zeitskala von wenigen Hundert Millionen Jahren verschmelzen wahrscheinlich auch ihre Kerne, wenn aus NGC 3256 eine einzelne, große elliptische Galaxie wird.

NGC 3256 liegt fast 100 Millionen Lichtjahre entfernt im südlichen Segelsternbild Vela. Das Bildfeld enthält viele noch weiter entfernte Galaxien im Hintergrund und gezackte Sterne im Vordergrund.

Zur Originalseite

Spiralgalaxie NGC 4038 in Kollision

Das Zentrum einer Galaxie wirkt stark strukturiert, es zeigt viele dunkle Staubnebel und einige rosarote und blau leuchtende Sternbildungsgebiete.

Bildcredit: NASA, ESA, Hubble, HLA; Bearbeitung und Bildrechte: Domingo Pestana

Beschreibung: Diese Galaxie hat ein schlechtes Jahrtausend. Eigentlich waren die letzten 100 Millionen Jahre nicht besonders gut, und die nächste Milliarde Jahre oder so wird wahrscheinlich ziemlich turbulent. NGC 4038 – rechts unten – war eine normale Spiralgalaxie, die sich um ihre Angelegenheiten kümmerte, bis NGC 4039 – links oben – in sie hineinstürzte. Hier ist das entstandene Trümmerfeld zu sehen, bekannt und berühmt als die Antennen.

Während die Gravitation jede Galaxie neu ordnet, prallen Gaswolken gegeneinander, es bilden sich helle blaue Knoten aus Sternen, massereiche Sterne entstehen und explodieren, und braune Fasern aus Staub werden verstreut. Am Ende verschmelzen die beiden Galaxien zu einer größeren Spiralgalaxie. Solche Kollisionen sind nicht ungewöhnlich, auch unsere Milchstraße hat mehrere Zusammenstöße erlebt und sollte in wenigen Milliarden Jahren mit der benachbarten Andromedagalaxie kollidieren.

Die Aufnahmen, aus denen dieses Bild entstand, wurden von professionellen Astronomen mit dem Weltraumteleskop Hubble erstellt, um Galaxienkollisionen besser zu verstehen. Diese Aufnahmen – und viele andere Hubble-Weltraumbilder – wurden seither veröffentlicht, damit interessierte Amateure diese herunterladen und bearbeiten können, zum Beispiel zu diesem visuell atemberaubenden Kompositbild.

Zur Originalseite

Die Galaxie NGC 474: Schalen und Sternströme

Die Galaxie mitten im Bild ist von eigentümlichen Schalen umgeben. Rechts daneben ist eine kleinere Galaxie, die eher gewöhnlich aussieht. Im Vordergrund sind unterschiedlich große Sterne verteilt.

Bildcredit: CFHT, Coelum, MegaCam, J.-C. Cuillandre (CFHT) und G. A. Anselmi (Coelum)

Beschreibung: Was geschieht mit der Galaxie NGC 474? Die vielfachen leuchtenden Schichten sind unerwartet und wirken seltsam komplex. Auf weniger detailreichen Bildern wirkt die elliptische Galaxie nämlich relativ strukturlos. Die Ursache der Hüllen ist derzeit unbekannt. Möglicherweise handelt es sich um Gezeitenschweife und Überreste, die nach Aufnahme zahlreicher kleiner Galaxien in den vergangenen Milliarden Jahren übrig blieben.

Vielleicht aber sind die Hüllen ähnlich wie Wellen in einem Teich, wobei die noch andauernde Kollision mit der Spiralgalaxie bei NGC 474 Dichtewellen verursacht, die sich im galaktischen Riesen ausbreiten.

Unabhängig von der Ursache zeigt dieses Bild die zunehmende Einigkeit darüber, dass zumindest einige elliptische Galaxien in jüngster Vergangenheit entstanden sind. Außerdem sind die äußeren Höfe der meisten großen Galaxien nicht wirklich ebenmäßig, sondern vielschichtig. Die Schichten entstehen durch häufige Wechselwirkungen mit – und Einlagerung von – kleineren nahen Galaxien.

Der Hof um unsere Milchstraße ist ein Beispiel so einer unerwarteten Vielschichtigkeit. NGC 474 ist ungefähr 250.000 Lichtjahre groß und 100 Millionen Lichtjahre entfernt. Sie befindet sich im Sternbild Fische (Pisces).

Zur Originalseite

Glücks-Wagenrad

Die drei Galaxien im Bild wirken verzerrt. Rechts ist eine Galaxie, die im inneren Kern gelb leuchtet und sehr eng gewickelte Spiralarme hat. Außen herum verläuft ein blauer heller Kreis aus Sternen. Zwischen dem Kern und dem Ring verlaufen zarte Speichen. Links sind zwei viel kleinere Galaxien, die untere leuchtet gelblich und wirkt strukturiert, die obere ist verzerrt und leuchtet blau.

Bildcredit: ESA, NASA

Beschreibung: Bei einer Kollision zweier Galaxien entstand eine in kosmischem Maßstab überraschend gut erkennbare Form: die „Wagenradgalaxie„. Das Wagenrad ist Teil einer etwa 500 Millionen Lichtjahre entfernten Galaxiengruppe im Sternbild Bildhauer. Links sind zwei kleinere Galaxien der Gruppe zu sehen.

Der Radkranz der Wagenradgalaxie ist eine gewaltige ringartige Struktur mit einem Durchmesser von 150.000 Lichtjahren. Er besteht aus neu entstandenen, extrem hellen, massereichen Sternen. Wenn Galaxien kollidieren, durchdringen sie einander, ihre Einzelsterne kommen selten in Berührung miteinander. Doch die Gravitationsfelder der Galaxie sind durch die Kollision stark verzerrt.

Die ringartige Form ist das Ergebnis der gravitativen Zerrüttung, verursacht durch eine kleine Galaxie, die in eine große Galaxie eindrang, interstellares Gas und Staub komprimierte und eine Sternbildungswelle auslöste, die vom Aufschlagspunkt nach außen wanderte – wie eine Welle über die Oberfläche eines Teiches. In diesem Fall könnte die große Galaxie ursprünglich eine Spirale gewesen sein, ähnlich wie unsere Milchstraße, die durch die Kollision in die Radform umgewandelt wurde. Was aber geschah mit dem kleinen Galaxieneindringling?

Zur Originalseite

GW170817: Spektakuläre Verschmelzung in mehreren Wellenlängen entdeckt

Erklärungsvideo-Credit: Bildgebungslabor der NASA

Bei einer explosiven Verschmelzung wurden erstmals kurz nacheinander Gravitationswellen und elektromagnetische Strahlung gemessen. Die Daten des Ausbruchs passen zur finalen Spirale, auf der zwei Neutronensterne in einem Binärsystem verschmelzen. Der explosionsartige Vorgang wurde am 17. August in der elliptischen Galaxie NGC 4993 beobachtet. Sie ist nur 130 Millionen Lichtjahre entfernt.

Erst wurden die Gravitationswellen beobachtet. Dabei kamen erstmals die Observatorien LIGO und Virgo auf der Erde zusammen zum Einsatz. Sekunden später maß das Fermi-Teleskop im Orbit Gammastrahlen. Ein paar Stunden später beobachteten Hubble und andere Observatorien Licht im ganzen elektromagnetischen Spektrum.

Dieses Erklärvideo zeigt den wahrscheinlichen Ablauf. Heiße Neutronensterne nähern sich auf spiralförmigen Bahnen. Dabei senden sie Gravitationswellen aus. Beim Verschmelzen bricht ein mächtiger Strahl hervor. Er stößt den kurzen Gammablitz aus. Dann werden Wolken ausgeworfen. Später folgt eine optische Art von Supernovae, die als Kilonova bezeichnet wird.

Erstmals passen die Entdeckungen zusammen. Sie bestätigen, dass LIGO-Ereignisse mit kurzen Gammablitzen einhergehen. Mächtige Verschmelzungen von Neutronensternen versorgten vermutlich das Universum mit vielen schweren Atomkernen. Dazu gehört Jod, das für Leben notwendig ist. Uran und Plutonium brauchen wir für Kernspaltung. Vielleicht habt ihr ein Andenken solcher Explosionen. Sie sind vermutlich auch die ursprüngliche Quelle von Gold.

Artikel von LIGO und LCO

Zur Originalseite

An der Quelle des Goldes

Zwei Himmelskörper sind vor einem dunklen Sternenhimmel dargestellt. Der obere ist dunkel mit goldenen Schlieren, der untere ist von einer strahlenden blauen Korona umgeben.

Illustrationscredit: Dana Berry, NASA

Woher kommt das Gold in eurem Schmuck? Das wissen wir nicht genau. Die durchschnittliche Menge an Gold im Sonnensystem ist anscheinend höher, als dass sie im frühen Universum, in Sternen und sogar bei typischen Supernovaexplosionen entstanden sein könnte.

Viele glauben, neutronenreiche schwere Elemente wie Gold sind am leichtesten bei den seltenen neutronenreichen Explosionen entstanden. So ein Ereignis wäre eine Kollision von Neutronensternen.

Diese künstlerische Illustration zeigt, wie zwei Neutronensterne auf einer spiralförmigen Bahn einander näher kommen. Kurz danach kollidieren sie. Kollisionen von Neutronensternen sind vielleicht der Ursprung kurzlebiger Gammastrahlenausbrüche. Vielleicht habt ihr schon ein Andenken an eine der mächtigsten Explosionen im Universum.

Hinweis: Das nächste APOD kommt während der Bekanntgabe einer NSF-Entdeckung mit Pressekonferenz am Montag.

Zur Originalseite