Animation: Perseïden-Meteoritenstrom

Visualisierungs-Credit: Ian Webster; Daten: NASA, CAMS, Peter Jenniskens (SETI-Institut)

Woher stammen die Perseïden-Sternschnuppen? Die Perseïden-Meteoroiden bestehen überwiegend aus kleinen Gesteinspartikeln. Sie wurden ursprünglich vom Kometen Swift-Tuttle abgegeben und folgen weiterhin der Umlaufbahn dieses Kometen, während sie sich langsam zerstreuen.

Die hier gezeigte Animation zeigt den gesamten Schlauch aus Meteoroiden auf seiner Umlaufbahn um unsere Sonne. Wenn sich die Erde wie jedes Jahr diesem Schlauch nähert, kommt es zum Perseïden-Meteorstrom.

Die in der Animation hell hervorgehobenen Kometenüberbleibsel sind normalerweise so lichtschwach, dass sie praktisch nicht nachweisbar sind. Nur ein kleiner Teil dieser Partikel wird in die Erdatmosphäre eindringen, sich dabei aufheizen und sich in einer Leuchterscheinung auflösen.

Heute und in den kommenden Nächten ist der Himmel für die Beobachtung der Perseïden und anderer aktiver Meteorströme besonders gut geeignet, da der zunehmende Halbmond nach Mitternacht nicht mehr am Himmel steht.

Himmlische Überraschung: Welches Bild zeigte APOD zum Geburtstag? (ab 1995, deutsch ab 2007)

Zur Originalseite

Spiel: Super Planet Crash

Bildcredit und Lizenz: Stefano Meschiari (U. Texas at Austin) und das SAVE/Point-Team

Schafft ihr ein Planetensystem, das 1000 Jahre übersteht? Mit dem Spiel Super Planet Crash könnt ihr es versuchen. Klickt einfach in die Nähe des Zentralsterns, um Planeten zu bilden – bis zu 10 sind möglich.

Links könnt ihr – nach Masse sortiert – eine Planetenart wählen: Erde, Super-Erde, Eisriese, Riesenplanet, Brauner Zwerg oder Zwergstern. Jeder Planet wird nicht nur vom zentralen, sonnenähnlichen Stern angezogen, sondern auch von anderen Planeten. Ihr bekommt Punkte, und für dichtere oder bewohnbare Systeme gibt es einen Bonus. Das Spiel endet nach 1000 Jahren oder wenn ein Planet durch die Gravitation hinausgeschleudert wird.

In den letzten Jahren wurden viele exoplanetare Systeme entdeckt, und Super Planet Crash zeigt, warum einige davon stabil sind. Wenn ihr einige Male Super Planet Crash spielt, könnt ihr euch wahrscheinlich vorstellen, warum vermutet wird, dass unser Sonnensystem während seiner Entstehung Planeten verloren hat.

Zur Originalseite

Mimas: Kleiner Mond mit großem Krater

Die Raumsonde Cassini zeigt den Krater Herschel auf dem kugelförmigen Saturnmond Mimas, der 1789 von Sir Wilhelm Herschel entdeckt wurde.

Bildcredit und Bildrechte: NASA, JPL-Caltech, Space Science Institute, Cassini

Beschreibung: Was auch immer Mimas getroffen hat, hätte ihn beinahe zerstört. Übrig blieb einer der größten Einschlagkrater auf einem von Saturns kleinsten runden Monden. Untersuchungen zeigen, dass ein etwas größerer Einschlag Mimas gänzlich zerstört hätte.

Der riesige, etwa 130 Kilometer große Krater, der hier abgebildet ist, trägt den Namen Herschel. Er wurde nach Sir Wilhelm Herschel benannt, der Mimas 1789 entdeckte. Die geringe Masse von Mimas bewirkt eine Oberflächengravation, die gerade einmal stark genug ist, um einen kugelförmigen Körper zu bilden, sie ist aber auch schwach genug für solche relativ großen Oberflächenstrukturen. Mimas besteht vorwiegend aus Wassereis mit ein wenig Gestein, daher man kann ihn gut als großen, schmutzigen Schneeball beschreiben.

Dieses Bild wurde 2010 beim bis dahin engsten Vorbeiflug der Roboter-Raumsonde Cassini an Mimas fotografiert, während sie Saturn umrundete.

Interaktiv: Reise über Mimas
Zur Originalseite

Die Dimensionen des Universums – Interaktiv

Link zur Animation: htwins.net/scale2

Animationscredit und -rechte: Cary und Michael Huang

Wie sieht das Universum im kleinen Maßstab aus? Oder im großen? Die Menschheit entdeckt, dass das Universum in jedem Bereich, den sie erforscht, sehr unterschiedlich ist. Zum Beispiel ist, soweit uns bekannt, jedes winzige Proton exakt gleich. Doch jede riesige Galaxie ist anders.

In einer Größenordnung, die Menschen vertraut ist, ist die Oberfläche eines Glastisches eher klein. Für eine Hausstaubmilbe ist sie aber eine unermesslich weite Ebene, die seltsam glatt ist. Vielleicht ist sie von kleinen Zellbrocken übersät. Nicht alle Größenordnungen verstehen wir gut. Zum Beispiel wird erforscht, was mit den winzigen Tröpfchen beim Niesen geschieht. Das hilft vielleicht, die Ausbreitung von Krankheiten einzudämmen.

Diese interaktive Flash-Animation ist eine moderne Version des klassischen Videos Zehn hoch. Es bietet ein neues Fenster zu vielen bekannten Größenordnungen des Universums. Wenn ihr den Balken unten verschiebt, könnt ihr eine Vielfalt an Größenordnungen erkunden. Mit Mausklicks auf einzelne Objekte ruft ihr die Beschreibung auf.

Zur Originalseite

Animation: Perseïden-Meteorstrom


Visualisierungscredit: Ian Webster; Daten: NASA, CAMS, Peter Jenniskens (SETI-Institut)

Beschreibung: Woher kommen die Meteore der Perseïden? Perseïdenmeteoride sind vorwiegend kleine Steinsplitter, die vom Kometen Swift-Tuttle abgestoßen wurden. Sie folgen weiterhin der Bahn dieses Kometen, während sie langsam auseinandertreiben.

Diese Animation zeigt den gesamten Meteoroidenstrom, der um unsere Sonne kreist. Wenn die Erde sich diesem Strom nähert, was jedes Jahr geschieht, tritt der Meteorstrom der Perseïden auf. Kometenschutt ist in dieser Animation hell dargestellt, normalerweise ist er klein und dunkel, sodass er praktisch nicht aufzuspüren ist. Nur ein kleiner Bruchteil dieser Teilchen gelangt in die Erdatmosphäre, wird aufgeheizt und leuchtet beim Zerfall.

Dieses Wochenende verspricht eine der besten Himmelsnächte, um die Perseïden und weitere aktive Meteorströme zu beobachten, weil der Neumond nicht nur dunkel ist, sondern einen Großteil der Nacht gar nicht am Himmel steht. Der Neumond wird zwar die blassen Perseïden nicht überstrahlen, wird aber die Sonne teilweise bedecken, sodass an manchen nördlichen Orten eine partielle Sonnenfinsternis zu beobachten ist.

Zur Originalseite

Die Winde der Erde


Bildcredit und Bildrechte: Cameron Beccario, earth.nullschool.net;
Daten und Bearbeitung (verkürzt): GFS und US National Weather Service (NOAA), Center for Climate Simulation (NASA)

Beschreibung: Wohin weht der Wind? Diese Karte verrät das und viel mehr, auch für Ihren Standort auf dem Planeten Erde. Die dynamische Karte kombiniert viele Quellen weltweiter Satellitendaten und Prognosen von Hochleistungsrechnern, die alle drei Stunden aktualisiert werden. Helle Wirbel zeigen meist Tiefdrucksysteme mit hoher Windgeschwindigkeit, etwa dramatische Zyklone, Wirbelstürme und Taifune.

Der Erdball kann zwar mit der Maus gedreht werden, doch für volle Interaktivität – zum Beispiel die Möglichkeit zu vergrößern – klicken Sie auf das Wort „earth“ links unten oder folgen Sie dem Link http://earth.nullschool.net/. Mit dem „earth“-Bedienfeld kann man zusätzlich Temperatur, Luftfeuchtigkeit, Luftdruck, Niederschlag und Kohlendioxidkarten einblenden und sogar zu Windgeschwindigkeiten in größerer Höhe oder Meeresströmen wechseln. Besonders in Zeiten rascher Veränderung können diese Karten veraltet oder ungenau sein.

Zur Originalseite

Erforsche Rosettas Kometen

Animation, interaktiv: sci.esa.int/comet-viewer/

Bildcredit: Science Office, ESA

Was sieht man beim Flug um einen Kometenkern? Seht selbst! Wartet, bis euer hoffentlich WebGL-kompatibler Browser ein detailliertes digitales Modell des Kometen 67P lädt. Dann forscht los!

Mit einer Standard-Maus könnt ihr mit der linken Taste den Kometen drehen, mit der rechten Taste ihr den Kometen bewegen und mit dem Scrollrad vergrößern oder verkleinern. Die robotische Raumsonde Rosetta der ESA umkreiste den Kometen C67/P Tschurjumow-Gerassimenko ab Mitte 2014. Letzten Freitag wurde sie nach einer unglaublich erfolgreichen Mission wie geplant auf der Oberfläche abgesetzt und abgeschaltet.

Rosetta schaffte viele beachtliche wissenschaftlichen Leistungen. Dank Rosetta verstehen wir nun besser, wie auf Kometenstrahlen entstehen, wenn sich ein Komet der Sonne nähert.

Zur Originalseite

Vesta-Wanderung: Ein digitales Modell des Asteroiden Vesta

Link zur Karte: https://trek.nasa.gov/vesta

Credit: NASA, JPL, LMMP, SSERVI, USGS, DLR

Erforsche den Asteroiden Vesta! Kürzlich besuchte die NASA-Robotersonde Dawn den Asteroiden Vesta. Er ist das zweitgrößte Objekt im Hauptasteroidengürtel im Sonnensystem. Vesta kreist zwischen Mars und Jupiter. Bei einem einjährigen Zwischenaufenthalt fotografierten Dawns Kameras Vestas ganze Oberfläche. Sie dokumentierten alle großen Berge und Krater auf dem Kleinplaneten.

Diese Bilder wurden nun zu einem digitalen Modell zusammengefügt. Man kann mit einem Navigator virtuell über Vesta fliegen. Durch Ziehen und Klicken kann man sogar interessante Oberflächendetails vergrößern. Weiters wickelt sich die anfangs flache 2D-Karte durch Klick auf das 3D-Symbol (unten) um ein fast kugelförmiges Objekt.

Dawn verließ Vesta 2012. Nun beginnt sie, die Geheimnisse des größten Objektes im Asteroidengürtel zu fotografieren und zu erforschen: die des Zwergplaneten Ceres.

Aktuell: Ceres‘ rätselhafte helle Flecken kommen wieder in Sicht

Zur Originalseite