Der Spinnennebel in Infrarot

Von links dringt ein gelbgrün schimmernder Nebel ins Bild, der von rechts beleuchtet wird. Der Hintergrund ist voller Sterne, einige davon sehr hell, die meisten weniger hell. Einige Sterne stechen hervor, unter anderem ein Stern rechts mit Zacken, der anscheinend den Nebel beleuchtet.

Bildcredit: NASA, JPL-Caltech, Weltraumteleskop Spitzer, 2MASS

Beschreibung: Wird die Spinne jemals die Fliege fangen? Nicht, wenn beide große Emissionsnebel im Sternbild Fuhrmann (Auriga) sind. Die spinnenförmige Gaswolke links ist eigentlich ein Emissionsnebel mit der Bezeichnung IC 417, die kleinere fliegenförmige Wolke rechts wird als NGC 1931 bezeichnet und ist sowohl Emissionsnebel als auch Reflexionsnebel. Beide Nebel sind ungefähr 10.000 Lichtjahre entfernt und enthalten junge offene Sternhaufen. Um die Größenordnung zu veranschaulichen: Der kompaktere NGC 1931 (Fliege) ist ungefähr 10 Lichtjahre groß.

Dieses Bild in wissenschaftlich zugeordneten Infrarotfarben kombiniert Bilder des Weltraumteleskops Spitzer und der Two Micron All Sky Survey (2MASS). Spitzer feiert sein 16. Jahr in einer Bahn um die Sonne in Erdnähe.

APOD in anderen Sprachen: arabisch, chinesisch (Peking), chinesisch (Taiwan), tschechisch, deutsch, Farsi, französisch, französisch, hebräisch, indonesisch, japanisch, katalanisch, koreanisch, kroatisch, montenegrinisch, niederländisch, polnisch, russisch, serbisch, slowenisch, spanisch und ukrainisch

Zur Originalseite

Spitzers Orion

Das Bild zeigt den Orionnebel, aber auf sehr ungewohnte Weise. Die hell leuchtenden Gebiete sind Staubwolken, die in Infrarotlicht hell leuchten.

Bildcredit: NASA, JPL-Caltech

Nur wenige kosmische Aussichten sind so fantastisch wie der Orionnebel. Er ist ein riesiges Sternbildungsgebiet, das etwa 1500 Lichtjahre entfernt ist. Das Infrarotbild des Weltraumteleskops Spitzer zeigt etwa 40 Lichtjahre dieser Region. Es entstand aus Daten, welche die Helligkeit junger Sterne im Nebel erfassen. Viele davon sind noch von staubigen, Scheiben umgeben, in denen Planeten entstehen.

Orions junge Sterne sind nur etwa eine Million Jahre alt. Das Alter der Sonne beträgt im Vergleich dazu 4,6 Milliarden Jahre. Die heißesten Sterne in der Region befinden sich im Trapezhaufen. Er ist der hellste Haufen nahe der Bildmitte.

Spitzer wurde am 25. August 2003 in eine Umlaufbahn um die Sonne gestartet. Das Kühlmittel des Teleskops war flüssiges Helium. Es ging im Mai 2009 zur Neige. Das Infrarot-Weltraumteleskop wird jedoch weiter betrieben. Das Ende seiner Mission ist für 30. Januar 2020 vorgesehen. Diese Falschfarbenansicht entstand 2010 in zwei Kanälen, die trotz Spitzers wärmerer Betriebstemperatur immer noch Infrarotlicht aufzeichnen.

Zur Originalseite

Supernovakanone stößt den Pulsar J0002 aus

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: F. Schinzel et al. (NRAO, NSF), Canadian Galactic Plane Survey (DRAO), NASA (IRAS); Komposition: Jayanne English (U. Manitoba)

Beschreibung: Was kann einen Neutronenstern wie eine Kanonenkugel ausstoßen? Eine Supernova. Vor etwa 10.000 Jahren zerstörte die Supernova, die den nebelartigen Überrest CTB 1 erzeugte, einen massereichen Stern, doch zusätzlich schoss sie den neu entstandenen Kern eines Neutronensterns – einen Pulsar – in die Milchstraße hinaus.

Der Pulsar rotiert 8,7-mal pro Sekunde um seine Achse. Er wurde mithilfe der Software Einstein@Home entdeckt, die  Daten des Gammastrahlen-Weltraumteleskops Fermi der NASA durchsucht. Der Pulsar PSR J0002+6216 (kurz J0002) rast mit einer Geschwindigkeit von mehr als 1000 Kilometern pro Sekunde dahin. Er hat den Supernovaüberrest CTB 1 bereits verlassen und ist schnell genug, um aus unserer Galaxis hinauszukommen. Die hier abgebildete Spur des Pulsars entspringt – wie man sieht – links unter dem Supernovaüberrest.

Dieses Bild ist eine Kombination aus Radiobildern des VLA– und des DRAO-Radioobservatoriums sowie Daten, die mit dem Infrarotobservatorium IRAS der NASA gewonnen wurden. Es ist bekannt, dass Supernovae sich wie Geschütze und Pulsare wie Kanonenkugeln verhalten können – doch wir wissen nicht, wie Supernovae das anstellen.

Zur Originalseite

Der Nordamerikanebel in Infrarot

Das Bild zeigt den Nordamerikanebel in Infrarotlicht, darüber ist eine Version in sichtbarem Licht gelegt.

Bildcredit und Bildrechte: NASA, JPL-Caltech, L. Rebull (SSC, Caltech); Optische Überlagerung: DSS, D. De Martin

Beschreibung: Der Nordamerikanebel kann, was die meisten Nordamerikaner nicht können: Sterne bilden. Wo genau diese Sterne im Nebel entstehen, ist meist hinter einem Teil des dichten Staubs im Nebel, der in sichtbarem Licht undurchlässig ist, versteckt. Doch diese Ansicht, die das Weltraumteleskop Spitzer des Nordamerikanebels im Infrarotlicht erstellte, lugt durch einen Großteil des Staubs und enthüllt Tausende neu entstandener Sterne.

Wenn ihr den Mauspfeil über dieses wissenschaftlich gefärbte Infrarotbild schiebt, seht ihr zum Vergleich ein visuelles Bild derselben Region. Das Infrarotbild zeigt junge Sterne in unterschiedlichen Entstehungsstadien, manche noch eingebettet in dichte Knoten aus Gas und Staub, andere umgeben von Scheiben und ausgeworfenen Strahlen, wieder andere schon frei von ihren Entstehungskokons.

Der Nordamerikanebel (NGC 7000) ist etwa 50 Lichtjahre groß, ungefähr 1500 Lichtjahre entfernt und liegt im Sternbild Schwan (Cygnus). Doch obwohl so viele Sterne im Nordamerikanebel bekannt sind, wird immer noch erörtert, welche massereichen Sterne das energiereiche Licht aussenden, welches den ionisierten roten Lichtschein erzeugt.

Zur Originalseite

Das magnetische Zentrum unserer Galaxis

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, SOFIA, Hubble

Beschreibung: Wie sieht das Magnetfeld im Zentrum unserer Milchstraße aus? Um das herauszufinden, fotografierte das NASA-Observatorium SOFIA, das in einer umgebauten 747 fliegt, die Zentralregion mit einem Instrument, das die Bezeichnung HAWC+ trägt. HAWC+ kartiert Magnetismus, indem es polarisiertes Infrarotlicht beobachtet, das von länglichen Staubkörnchen abgestrahlt wird, die am lokalen Magnetfeld ausgerichtet rotieren.

Nun liegt im Zentrum unserer Milchstraße ein sehr massereiches Schwarzes Loch mit der Vorliebe, Gas von Sternen, die es kürzlich zerstörte, zu absorbieren. Das Schwarze Loch unserer Galaxis ist jedoch relativ ruhig, verglichen mit der Absorptionsrate zentraler Schwarzer Löcher in aktiven Galaxien. Dieses Bild könnte zeigen, warum das so ist: Entweder kanalisiert ein umgebendes Magnetfeld Gas in das Schwarze Loch, das sein Äußeres beleuchtet, oder das Magnetfeld zwingt Gas in die Warteschleife um eine Akkretionsscheibe, weshalb es weniger aktiv ist – zumindest vorübergehend.

Dieses Bild wirkt wie ein surreales Mischmasch aus Impasto und Gravitationsastrophysik. Es zeigt bei genauer Betrachtung den aufschlussreichen Hinweis, indem es das Magnetfeld in und um einen staubigen Ring, der Sagittarius A* umgibt, detailreich abbildet. Sagittarius A* ist das Schwarze Loch im Zentrum unserer Galaxis.

Zur Originalseite

Der Höhlennebel in Infrarot von Spitzer

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Bildcredit: NASA, Juno, SwRI, MSSS; Bearbeitung und Lizenz: Gerald Eichstädt und Sean Doran

Beschreibung: Was passiert in und um den Höhlennebel? Um das herauszufinden, beobachtete das Weltraumteleskop Spitzer der NASA diese optisch dunkle Sternbildungsregion in vier Farben des Infrarotlichts. Der Höhlennebel ist als Sh2-155 katalogisiert. In Infrarot strahlt er ziemlich hell, man erkennt Details sowohl von Gas- und Staubsäulen im Inneren als auch des beleuchteten Sternhaufens – alle liegen nahe am oberen Bildrand.

Das rote Leuchten um den Höhleneingang stammt von Staub, der von hellen jungen Sternen aufgeheizt wird. Rechts daneben liegt Kepheus B, ein Sternhaufen, welcher in der gleichen Gas- und Staubwolke entstand. Andere interessante Sterne in Kepheus leuchten im Infraroten ebenfalls hell, unter anderem jene, die einen noch jüngeren Nebel am unteren Bildrand beleuchten, sowie ein Ausreißerstern, der eine rötliche Bugstoßwelle vor sich herschiebt – diese liegt nahe der Bildmitte.

Die gezeigte Region umfasst etwa 50 Lichtjahre und liegt ungefähr 2500 Lichtjahre entfernt im Sternbild des Königs von Aithiopia (Kepheus).

Das Neueste von der NASA: Newsletter abonnieren

Zur Originalseite

Das zentrale magnetische Feld der Zigarrengalaxie

Das Bild zeigt die Galaxie M82. Die irreguläre Galaxie liegt schräg im Bild, in der Mitte sind stark strukturierte gelbe und rötliche Nebel, nach links und rechts breitet sich weißer Nebel aus.

Bildcredit: NASA, SOFIA, E. Lopez-Rodriguez; NASA, Spitzer, J. Moustakas et al.

Beschreibung: Sind Galaxien gewaltige Magnete? Ja, aber die Magnetfelder in Galaxien sind typischerweise viel schwächer als auf der Erdoberfläche, außerdem komplexer und schwieriger zu messen. Kürzlich jedoch erfasste das Instrument HAWC+ an Bord des luftgestützten SOFIA-Observatoriums (747) erfolgreich die Details ferner Magnetfelder durch die Beobachtung von Infrarotlicht, das durch Reflexion an Staubkörnchen polarisiert wurde.

M82, die Zigarrengalaxie, wurde mit HAWC+ beobachtet. Die gewonnenen Daten zeigen, dass das zentrale Magnetfeld lotrecht zur Scheibe und parallel zum starken galaktischen Superwind verläuft. Diese Beobachtung stärkt die Hypothese, dass das zentrale Magnetfeld von M82 ihrem Wind hilft, die Masse von Millionen Sternen von der zentralen Sternausbruchsregion hinauszutransportieren. Dieses Bild zeigt Magnetfeldlinien, die über ein Bild des Kitt-Peak-Nationalobservatoriums gelegt wurden, das in sichtbarem Licht (grau) und Wasserstoffleuchten (rot) fotografiert und mit Infrarotbildern (gelb) von SOFIA und dem Weltraumteleskop Spitzer kombiniert wurde.

Die Zigarrengalaxie ist ungefähr 12 Millionen Lichtjahre entfernt und mit Fernglas im Sternbild Großer Bär sichtbar.

Zur Originalseite

Der Orionnebel in Infrarot von WISE

Das Bild zeigt den Orionnebel mit nur wenigen Sternen und in völlig ungewohnten Farben.

Bildcredit: WISE, IRSA, NASA; Bearbeitung und Bildrechte: Francesco Antonucci

Beschreibung: Der prächtige Nebel im Orion ist ein faszinierender Ort. Er ist mit bloßem Auge sichtbar und erscheint als kleiner, verschwommener Fleck im Sternbild Orion. Doch dieses Bild, ein Falschfarbenmosaik aus vier Bildern, die in verschiedenen Spektralbändern des infraroten Lichtes mit dem Observatorium WISE im Erdorbit aufgenommen wurden, zeigt den Orionnebel als turbulente Umgebung von kürzlich entstandenen Sternen, heißem Gas und dunklem Staub.

Die Energie für einen Großteil des Orionnebels (M42) stammt von den Sternen des Trapezium-Sternhaufens, der nahe der Mitte dieses Bildes zu sehen ist. Das orangefarbene Leuchten, das die hier abgebildeten hellen Sterne umgibt, ist ihr eigenes Sternenlicht, das von verschlungenen Staubfasern reflektiert wird, welche einen Großteil der Region bedecken. Der aktuelle Orionnebel-Wolkenkomplex, der den Pferdekopfnebel enthält, löst sich im Laufe der nächsten 100.000 Jahre langsam auf.

Zur Originalseite