Die Sombrerogalaxie in Infrarot

Mitten im Bild schwebt ein rosafarbener Ring um eine blau leuchtende Wolke.

Bildcredit: R. Kennicutt (Steward Obs.) et al., SSC, JPL, Caltech, NASA

Dieser schwebende Ring ist so groß wie eine Galaxie. Eigentlich ist er eine Galaxie – oder zumindest ein Teil davon: Es ist die fotogene Sombrerogalaxie, eine der größten Galaxien im nahen Virgo-Galaxienhaufen. Das dunkle Band aus Staub, das in sichtbarem Licht den mittleren Abschnitt der Sombrerogalaxie verdeckt, strahlt hell im Infrarotlicht.

Dieses digital geschärfte Bild wurde mit dem Weltraumteleskop Spitzer im Orbit aufgenommen. Es zeigt das infrarote Leuchten, das in Falschfarben über ein Bild des Weltraumteleskops Hubble in sichtbarem Licht gelegt wurde.

Die Sombrerogalaxie ist auch als M104 bekannt. Sie ist etwa 50.000 Lichtjahre groß und 28 Millionen Lichtjahre entfernt. M104 seht ihr mit einem kleinen Teleskop im Sternbild Jungfrau.

Zur Originalseite

Junge Sterne, stellare Strahlen

Mitten im sternbedeckten Bild leuchtet ein rötlicher Nebel, rechts darunter leuchten helle Sterne mit je 6 Zacken, einige weitere Sterne im Bild haben ebenfalls 6 Zacken.

Bildcredit und Bildrechte: NASA, ESA, CSA, Bearbeitung: Joseph DePasquale (STScI)

Molekulares Gas, das mit hoher Geschwindigkeit von einem Paar aktiver junger Sterne ausströmt, leuchten im Infrarotlicht. Sie sind auf diesem Bild, das mit der NIRcam des Weltraumteleskops James Webb aufgenommen wurde, dargestellt.

Die jungen Sterne sind als HH (Herbig-Haro) 46/47 katalogisiert. Sie befinden sich in einem dunklen Nebel, der in sichtbarem Licht großteils undurchsichtig ist. Das Sternenpaar ist auf dem NIRcam-Bild in der Mitte der markanten rötlichen Beugungsspitzen. Ihre energiereichen Sternströme sind fast ein Lichtjahr lang und wühlen sich in das dunkle interstellare Material.

Dieses junge Sternsystem ist nur etwa 1140 Lichtjahre entfernt, also relativ nahe und liegt im nautischen Sternbild Schiffssegel. Es eignet sich bestens für die Erforschung mit Webbs Infrarotausrüstung.

Zur Originalseite

Der Adlernebel mit heißen Röntgensternen

Säulen aus Gas und dunklem Staub verlaufen diagonal von links unten nach rechts oben. Leuchtstarke Röntgenquellen sind als helle Punkte um das Bild herum eingeblendet. Infraroter Staub leuchtet hinter den Säulen.

Bildcredit: Röntgen: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; Infrarot: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Sichtbares Licht: Hubble: NASA/ESA/STScI, ESO; Bildbearbeitung: L. Frattare, J. Major, N. Wolk und K. Arcand

Wie sehen die berühmten Sternsäulen im Adlernebel in Röntgenlicht aus? Um das herauszufinden, spähte das NASA-Röntgenobservatorium Chandra im Orbit in und durch diese interstellaren Berge der Sternbildung. Es zeigte sich, dass die Staubsäulen selbst nicht viel Röntgenlicht abstrahlt, doch es kamen viele kleine, aber helle Röntgenquellen zum Vorschein. Sie sind als helle, rötliche Punkte abgebildet.

Das Bild ist ein Komposit aus Aufnahmen von Chandra (Röntgen), XMM (Röntgen), JWST (Infrarot), Spitzer (Infrarot), Hubble (visuell) und dem VLT (visuell). Welche Sterne diese Röntgenstrahlen erzeugen, wird weiterhin erforscht, doch einige sind vermutlich heiße, kürzlich entstandene Sterne mit geringer Masse, andere dagegen heiße, ältere Sterne mit großer Masse.

Die heißen Röntgensterne sind im Bild verteilt. Schon früher wurden sie als verdampfende gasförmige Globulen (EGGS) erkannt. In sichtbarem Licht sind sie unsichtbar, und derzeit sind sie auch nicht heiß genug, um Röntgenlicht abzustrahlen.

Zur Originalseite

Das dunkle Seepferdchen in Kepheus

Ein Sternenfeld ist voller düsterer Staubwolken, in der Mitte verläuft eine schmale, dunkle Wolke in Form eines Seepferdchens.

Bildcredit und Bildrechte: Jeff Herman

Der Seepferdchennebel ist Lichtjahre lang. Seine markante Form erscheint als Silhouette vor einem reichhaltigen, funkelnden Hintergrund aus Sternen. Die staubhaltigen, undurchsichtigen Wolken im königlichen Sternbild Kepheus sind Teil einer etwa 1200 Lichtjahre entfernten Molekülwolke in der Milchstraße. Sie ist auch als Barnard 150 (B150) gelistet und zählen zu den 182 dunklen Markierungen am Himmel, die der Astronom E. E. Barnard Anfang des 20. Jahrhunderts katalogisierte.

Im Inneren entstehen ganze Gruppen an Sternen mit geringer Masse, doch ihre kollabierenden Kerne sind nur in langen Infrarotwellenlängen sichtbar. Die farbigen Sterne in Kepheus ergänzen diese hübsche galaktische Himmelslandschaf.

Zur Originalseite

Titan sehen

Rund um ein Bild des Saturnmondes Titan mit gelber, glatter Atmosphäre sind 6 Bilder angeordnet, auf denen die Oberfläche von Titan zu sehen ist.

Bildcredit: VIMS-Team, U. Arizona, U. Nantes, ESA, NASA

Saturns größter Mond Titan ist von einer dichten Atmosphäre verhüllt, daher ist es wirklich schwierig, ihn zu sehen. Kleine Teilchen, die in der oberen Atmosphäre verteilt sind, bilden einen fast undurchdringlichen Dunst, der Licht in sichtbaren Wellenlängen stark streut und Titans Oberfläche vor neugierigen Augen versteckt. Doch in Infrarotwellenlängen kann Titans Oberfläche abgebildet werden. Diese werden schwächer gestreut und die atmosphärische Absorption reduziert.

Rund um das Titan-Bild in sichtbarem Licht (Mitte) sind einige der bisher klarsten globalen Infrarotansichten des interessanten Mondes angeordnet. Die sechs Bildfelder in Falschfarben sind Infrarotbilddaten, die im Laufe von 13 Jahren mit dem visuellen und infraroten Kartierungs-Spektrometer (VIMS) an Bord der Raumsonde Cassini gewonnen und einheitlich bearbeitet wurden. Die Raumsonde kreiste von 2004 bis 2017 um Saturn. Sie bieten einen interessanten Vergleich mit Cassinis Ansicht in sichtbarem Licht.

Im Jahr 2027 soll die revolutionäre Rotorflugzeugmission Dragonfly der NASA zu Titan aufbrechen.

Zur Originalseite

Sieben staubige Schwestern in Infrarot

Das Sichtfeld mit faserartigem Staub ist in verschiedene Abschnitte in unterschiedlichen Farben eingeteilt. Im Hintergrund leuchten Sterne.

Bildcredit: NASA, WISE, IRSA, Bearbeitung und Bildrechte: Francesco Antonucci

Ist das wirklich der berühmte Sternhaufen der Plejaden? Sie sind für ihre kultigen blauen Sterne bekannt, doch hier sind die Plejaden in Infrarotlicht abgebildet, sodass der umgebende Staub die Sterne überstrahlt. Drei Infrarotfarben wurden in visuelle Farben umgewandelt (R=24, G=12, B=4.6 Mikrometer). Die Basisbilder stammen von der NASA-Raumsonde WISE zur Weitwinkel-Durchmusterung in Infrarot im Erdorbit.

Der Sternhaufen der Plejaden ist als M45 katalogisiert. Er wird landläufig Sieben Schwestern genannt und liegt zufällig in einer vorbeiziehenden Staubwolke. Das Licht und die Winde der massereichen Sterne der Plejaden stoßen bevorzugt kleinere Staubteilchen ab. Dadurch wird der Staub – wie man sieht – zu Fasern geschichtet.

Die Plejaden im Sternbild Stier (Taurus) sind ungefähr 450 Lichtjahre entfernt. In dieser Entfernung umfasst das Bild etwa 20 Lichtjahre.

Zur Originalseite

MAC0647: Webbs Gravitationslinsen im frühen Universum

Webbs neue Ansicht des Objekts MACS0647-JD zeigt bisher unbekannte Details. Beschreibung im Text.

Bildcredit: NASA, ESA, CSA, Dan Coe (STScI), Rebecca Larson (UT), Yu-Yang Hsiao (JHU); Bearbeitung: Alyssa Pagan (STScI); Text: Michael Rutkowski (Minn. St. U. Mankato)

Dieses lebhafte neue Vielfarben-Infrarotbild des James-Webb-Weltraumteleskops (JWST) zeigt die Gravitationslinse des Galaxienhaufens MACS0647. Der massereiche Vordergrundhaufen verzerrt und bricht das Licht der dahinter liegenden fernen Galaxien in derselben Sichtlinie. So wird die Hintergrundquelle MACS0647-JD vom Haufen offenbar dreifach vergrößert.

Als MACS0647-JD erstmals mit dem Weltraumteleskop Hubble beobachtet wurde, sah man sie als amorphen Klecks. Mit Webb entpuppt sich diese einzelne Quelle jedoch als Paar oder kleine Galaxiengruppe. Auch die Farben der MACS0647-JD-Objekte sind unterschiedlich – ein möglicher Hinweis auf Unterschiede im Alter oder im Staubgehalt dieser Galaxien.

Diese neuen Bilder liefern seltene Beispiele an Galaxien aus einer Zeit von wenigen 100 Millionen Jahren nach dem Urknall.

Entdecke das Universum: APOD-Zufallsgenerator
Zur Originalseite

M16: Webb zeigt eine Säule mit Sternbildung

Das Bild zeigt eine Staubsäule im Adlernebel, auch M16, im Sternbild Schlange.

Bildcredit: NASA, ESA, CSA, STScI, Bearbeitung und Bildrechte: Mehmet Hakan Özsaraç

Was passiert im Inneren dieses interstellaren Berges? Es entstehen Sterne. Der Berg ist eigentlich eine Säule aus Gas und Staub im malerischen Adlernebel (M16). Eine Säule wie diese hat eine so geringe Dichte, dass man leicht durch sie hindurch fliegen könnte – sie erscheint nur wegen ihres hohen Staubanteils und der großen Tiefe so kompakt.

Neu entstandene Sterne beleuchten die hellen Bereiche von innen heraus. Diese Regionen leuchten in rotem und infrarotem Licht, da der dazwischenliegende interstellare Staub das blaue Licht streut.

Dieses Bild stammt vom James-Webb-Weltraumteleskop (JWST), das Ende des letzten Jahres startete. Es wurde kürzlich beispiellos detailreich in nahem Infrarotlicht aufgenommen. Energiereiches Licht, heftige Winde und finale Supernovae dieser jungen Sterne zerstören in den nächsten 100.000 Jahren langsam diese Sterngeburtssäule.

Astrophysik: Mehr als 2900 Codes in der Quellcodebibliothek für Astrophysik
Zur Originalseite