Das südliche Riff der Lagune

Im dunklen und rot leuchtenden Bereich des Nebels ragen hellgelbe Riffe und Grate hervor.

Credit: Julia I. Arias und Rodolfo H. Barbá (Dept. Fisica, Univ. de La Serena), ICATE-CONICET, Gemini Observatory/AURA

Beschreibung: Geschwungene, helle Grate und Staubwolken verlaufen durch diese Nahaufnahme der nahe gelegenen Sternbildungsregion M8. Sie ist auch als Lagunennebel bekannt. Die Gesamtansicht des scharfen Falschfarbenkomposits wurde mit dem 8-Meter-Teleskop Gemini-Süd aufgenommen.

Das Bild entstand aus Schmalbanddaten im sichtbaren Licht und Breitbanddaten im nahen Infrarot. Es zeigt etwa 20 Lichtjahre in einer Region des Nebels, die manchmal als das Südliche Riff bezeichnet wird.

Das sehr detailreiche Bild erforscht den Verband vieler neuer Sterne, die in den Spitzen der hell geränderten Wolken und in Herbig-Haro-Objekte eingebettet sind. Herbig-Haro-Objekte sind reich an Sternbildungsregionen. Sie entstehen, wenn junge Sterne bei ihrer Entstehung energiereiche Materieströme ausstoßen, welche die umgebenden Wolken aus Staub und Gas aufheizen.

Die kosmische Lagune ist etwa 5000 Lichtjahre entfernt, sie liegt im Sternbild Schütze nahe dem Zentrum der Milchstraße.

Zur Originalseite

Junge Sterne in der Rho-Ophiuchi-Wolke

Mitten im Bild leuchten weißlich-grüne Staubnebel, die von dunklen Staubwolken umgeben sind. Rechts unten leuchtet ein heller roter Nebel um einen Stern.

Credit: NASA, JPL-Caltech, WISE-Team

Beschreibung: Staubwolken und eingebettete neu entstandene Sterne leuchten auf dieser Komposition in Falschfarben von WISE, dem Wide-field Infrared Survey Explorer. Das Bild wurde in infraroten Wellenlängen aufgenommen.

Die kosmische Leinwand zeigt eine der am nächsten gelegenen Sternbildungsregionen, sie ist Teil des Rho-Ophiuchi-Wolkenkomplexes, der etwa 400 Lichtjahre entfernt nahe dem südlichen Rand des Sternbildes Schlangenträger (Ophiuchus) liegt.

Nachdem die jungen Sterne in einer großen Wolke aus kaltem, molekularem Wasserstoff entstanden sind, heizen sie den Staub in ihrer Umgebung auf und erzeugen so das infrarote Leuchten. Sterne im Entstehungsprozess werden als junge stellare Objekte oder YSOs bezeichnet. Sie sind vor den Augen optischer Teleskope verborgen. Hier sind sie in den kompakten, rötlichen Nebel eingebettet.

Wenn man die Region im alles durchdringenden Infrarotlicht genau untersucht, kommen Sterne zum Vorschein, die noch entstehen oder neu entstanden sind. Ihr durchschnittliches Alter wird auf etwa 300.000 Jahre geschätzt. Das ist extrem jung, verglichen mit dem Alter der Sonne von etwa fünf Milliarden Jahren.

Der markante rötliche Nebel rechts unten, der den Stern Sigma Scorpii umgibt, ist ein Reflexionsnebel, er leuchtet im Sternenlicht, das vom Staub gestreut wird. Diese Ansicht von WISE ist fast zwei Grad breit, das entspricht in der geschätzten Entfernung der Rho-Ophiuchi-Wolke etwa 14 Lichtjahre.

Zur Originalseite

MWC 922: das Rote Quadrat

Mitten im Bild leuchtet ein rotes Quadrat, in der Mitte leuchtet ein helles X in Form der Diagonalen. Das Rechteck ist von roten Rändern in regelmäßigen Abständen umgeben.

Credit und Bildrechte: Peter Tuthill (Sydney U.) und James Lloyd (Cornell)

Beschreibung: Warum sieht dieser Nebel wie ein Quadrat aus? Niemand weiß das genau. Das heiße Sternsystem ist als MWC 922 bekannt, und es ist offensichtlich in einen Nebel mit genau dieser Form eingebettet.

Dieses Bild kombiniert Infrarotaufnahmen des Hale-Teleskops auf dem Mt. Palomar in Kalifornien und des Keck-2-Teleskops auf dem Mauna Kea auf Hawaii. Die führende Hypothese zur Entstehung des Quadratnebels besagt, dass der Zentralstern oder die Zentralsterne in einem späten Entwicklungsstadium Gaskegel ausschleuderten. Bei MWC 922 bilden diese Kegel zufällig fast genau rechte Winkel und sind von der Seite zu sehen.

Ein Hinweis, der die Kegelhypothese stützt, sind die sternförmigen Speichen im Bild, welche vielleicht die Kegelwände entlanglaufen. Forscher vermuten, dass die Kegel aus einem andern Blickwinkel so ähnlich aussehen wie die riesigen Ringe der Supernova 1987A. Das lässt die Vermutung zu, dass ein Stern in MWC 922 eines Tages selbst als ähnliche Supernova explodieren könnte.

Zur Originalseite

Der Nordamerikanebel im Infrarotlicht

Das Bild zeigt zwei versionen des Nordamerikanebels: eine im Infrarotlicht, überlagert von einer alternativ gefärbten im sichtbaren Licht. Beschreibung im Text.

Credit: NASA, JPL-Caltech, Luisa Rebull (SSC, Caltech); übergelagertes Bild in sichtbarem Licht: DSS, D. De Martin

Beschreibung: Der Nordamerikanebel kann – anders als Nordamerika – Sterne bilden. Wo genau im Nebel diese Sterne entstehen, ist großteils hinter einigen dicken Staubschichten im Nebel versteckt, die für sichtbares Licht undurchdringlich sind. Nun gibt es eine neue Ansicht des Nordamerikanebels im Infrarotlicht, für die das Weltraumteleskop Spitzer im Erdorbit durch einen Großteil des Staubs hindurch spähte und Tausende neue Sterne entdeckte.

Wenn ihr den Mauspfeil über das wissenschaftlich eingefärbte Infrarotbild schiebt, seht ihr zum Vergleich ein entsprechendes Bild im sichtbaren Licht derselben Region. Das neue Infrarotbild zeigt hübsche junge Sterne in vielen Phasen der Sternbildung, manche sind in dichte Knoten aus Staub und Gas eingebettet, andere von Scheiben und ausströmenden Strahlen umgeben, und wieder andere, die haben sich schon von ihrem Gaskokon befreit.

Der Nordamerikanebel NGC 7000 ist etwa 50 Lichtjahre groß und befindet sich zirka 1500 Lichtjahre entfernt im Sternbild Schwan (Cygnus). Welche massereichen Sterne von allen Sternen, die wir im Nordamerikanebel kennen, die energiereiche Strahlung abgeben, die für das ionisierte rote Leuchten sorgt, wird nach wie vor erforscht.

Zur Originalseite

Ausreißerstern Zeta Oph

Siehe Erklärung. Ein Klick auf das Bild lädt die höchstaufgelöste verfügbare Version.

Credit: NASA, JPL-Caltech, WISE-Team

Beschreibung: Wie ein Schiff, das durch das kosmische Meer pflügt, zieht der Ausreißerstern Zeta Ophiuchi eine gewölbte interstellare Bugwelle oder Kopfwelle, die auf diesem Infrarotbild der Raumsonde WISE zu sehen ist.

Der bläuliche Stern Zeta Oph ist etwa 20-mal massereicher als die Sonne. Er steht in der Mitte dieser Falschfarben-Ansicht und bewegt sich mit 24 Kilometern pro Sekunde nach oben. Sein starker Sternwind eilt ihm voraus, er komprimiert dabei die staubhaltige interstellare Materie und heizt sie auf. So entsteht die kurvenförmige Stoßfront. In der Umgebung liegen Wolken aus relativ unbewegtem Material.

Wie ist dieser Stern in Bewegung geraten? Zeta Oph war wahrscheinlich ursprünglich Teil eines Doppelsternsystems mit einem massereicheren und daher kurzlebigeren Begleitstern. Als der Begleiter als Supernova explodierte und katastrophal an Masse verlor, wurde Zeta Oph aus dem System geschleudert.

Zeta Oph ist etwa 460 Lichtjahre entfernt und 65.000-mal leuchtstärker als die Sonne. Er wäre einer der hellsten Sterne am Himmel, wenn er nicht von undurchsichtigem Staub umgeben wäre. Das 1,5 Grad breite WISE-Bild ist in der geschätzten Entfernung von Zeta Ophiuchi etwa 12 Lichtjahre breit.

Zur Originalseite

Die Strudelgalaxie in infrarotem Staub

Im Bild breitet sich eine detailreiche, von oben sichtbare Spiralgalaxie aus, mit vielen Staubbahnen, rosa Sternbildungsgebiten und einem hellen gelblichen Zeitrum. Darüber ist eine rötliche Aufnahme in Infrarotlicht gelegt.

Credit: Infrarot: NASA, ESA, M. Regan und B. Whitmore (STScI) und R. Chandar (U. Toledo); Sichtbares Licht: NASA, ESA, S. Beckwith (STScI) und das Hubble-Vermächtnis-Team (STScI/AURA)

Beschreibung: Wie bilden Spiralgalaxien Sterne? Um das herauszufinden, fotografierte das Weltraumteleskop Hubble die nahe gelegene, fotogene Spirale M51 im Infrarotlicht, um den Staub zu betonen, der dem dichten Gas folgt, aus dem am ehesten Sterne entstehen. Um den Staub weiter zu isolieren, wurde auch ein Großteil von dem optischen Licht der Sterne digital entfernt. Das einzigartige Bild, das dabei entstand, zeigt im großen Maßstab wirbelnde, komplexe Muster und in kleineren Maßstäben viele helle Klumpen offener Sternhaufen, die zuvor versteckt waren.

Wenn ihr den Mauspfeil über das Bild schiebt, seht ihr zum Vergleich ein detailreiches Bild im sichtbaren Licht. Jeder* kann mit einem guten Fernglas die Strudelgalaxie im Sternbild Jagdhunde (Canes Venatici) sehen. M51 ist etwa 30 Millionen Lichtjahre entfernt. Dieses Bildfeld ist von oben bis unten zirka 15.000 Lichtjahre hoch. Astronomen vermuten, dass die Spiralstruktur von M51 durch die gravitative Wechselwirkung ihrer kleineren Nachbargalaxie beeinflusst wird.

Zur Originalseite

Eine Million Galaxien

Die ovale dunkle Scheibe im Bild zeigt den ganzen Himmel. Am Rand ist das oval leicht hellblau, das Oval ist von hellen Sprenkeln übersät. Links oben steht 2MASShowcase

Credit: 2MASS, T. H. Jarrett, J. Carpenter und R. Hurt

Sind die am nächsten gelegenen Galaxien zufällig verteilt? Die Zwei-Mikrometer-Durchmusterung des ganzen Himmels (2-Mikron-All-Sky-Survey, 2MASS) erfasste mehr als eine Million der hellsten „ausgedehnten Quellen“. Dabei wurde eine Karte erstellt. Sie zeigt, dass die Quellen nicht zufällig verteilt sind. Die meisten ausgedehnten Infrarotquellen sind Galaxien.

Dieses Bild zeigt eine detailreiche Strukturtapete. Die Strukturen definieren die Grenzen, innerhalb derer das Universum entstanden ist und sich entwickelt hat. Viele Galaxien bilden durch Gravitation Haufen. Diese Haufen sind lose in Superhaufen eingebunden, die manchmal von anscheinend zu noch größeren Strukturen geordnet sind. Der senkrechte blaue Streifen besteht aus den hellen Sternen unserer Milchstraße.

Zur Originalseite

Zu nahe an einem schwarzen Loch

Mitten in einer sterngesprenkelten Gegend öffnet sich ein schwarzer Kreis, der wie von einem Wulst umgeben wirkt.

Credit und Bildrechte: Alain Riazuelo

Beschreibung: Was würdet ihr sehen, wenn ihr zu einem schwarzen Loch kommt? Oben seht ihr ein computergeneriertes Bild, das zeigt, wie seltsam die Dinge aussehen würden. Das schwarze Loch besitzt eine so starke Gravitation, dass Licht merklich in seine Richtung gebogen ist. Das würde einige sehr ungewöhnliche visuelle Verzerrungen verursachen.

Jeder Stern im normalen Bildfeld hat mindestens zwei helle Abbildungen, und zwar eine auf jeder Seite des schwarzen Lochs. In der Nähe des schwarzen Lochs seht ihr den gesamten Himmel, weil Licht aus jeder Richtung außen herum gebeugt wird und zu euch zurückkommt.

Die ursprüngliche Hintergrundkarte stammt aus der Himmelsdurchmusterung 2MASS in Infrarot. Die Sterne des Henry-DraperKatalogs wurden darüber gelegt. Schwarze Löcher gelten als der dichteste Zustand, den Materie annehmen kann, und es gibt indirekte Hinweise auf ihr Vorkommen in Doppelsternsystemen und in den Zentren von Kugelsternhaufen, Galaxien und Quasaren.

Zur Originalseite