Im Inneren des Coma-Galaxienhaufens

Im Bild sind Galaxien verteilt.

Credit: NASA, ESA, Hubble Heritage (STScI/AURA); Dank an D. Carter (LJMU) et al. und das Coma HST ACS Treasury Team

Beschreibung: Fast jedes Objekt auf diesem Foto ist eine Galaxie. Der Coma-Galaxienhaufen ist einer der dichtesten bekannten Haufen – er enthält Tausende Galaxien. Jede dieser Galaxien enthält Milliarden Sterne – wie auch unsere Galaxis, die Milchstraße. Verglichen mit anderen Haufen ist der Coma-Haufen nahe, doch sein Licht ist Hunderte Millionen Jahre bis zu uns unterwegs.

Der Coma-Haufen ist so groß, dass Licht Millionen Jahre braucht, um von einem Ende zum anderen zu gelangen. Dieses Mosaik aus Bildern zeigt einen kleinen Ausschnitt des Coma-Haufens. Es wurde beispiellos detailreich mit dem Weltraumteleskop Hubble aufgenommen, um herauszufinden, wie Galaxien in reichhaltigen Haufen entstehen und sich entwickeln.

Die meisten Galaxien in Coma und anderen Haufen sind elliptisch, doch einige der hier abgebildeten sind eindeutig Spiralen. Die Spiralgalaxie links oben im Bild ist auch eine der blaueren Galaxien in diesem größeren Bildfeld. Im Hintergrund leuchten Tausende einzelne Galaxien, die im weit entfernt im Universum verteilt sind.

Jubiläum: APOD begann heute vor 13 Jahren.
Zur Originalseite

Kollidierende Spiralgalaxien

Zwei gelbe Galaxien leuchten auf einem dunklen Hintergrund, sie erinnern an unheimliche Augen.

Credit: Debra Meloy Elmegreen (Vassar College) et al. und das Hubble-Vermächtnis-Team (AURA/STScI/NASA)

In Milliarden Jahren bleibt von diesen beiden Galaxien nur eine übrig. Bis dahin zerreißen die Spiralgalaxien NGC 2207 und IC 2163 einander langsam. Dabei bilden sie Gezeitenströme aus Materie, Bögen und Stoßfronten aus Gas, Spuren aus dunklem Staub und Ströme aus weggefegten Sternen. Die Sternbildung wird sprunghaft ansteigen.

Forschende vermuten, dass die größere Galaxie NGC 2207 links die kleinere Galaxie IC 2163 rechts in sich aufnehmen wird. Der Höhepunkt ihrer jüngsten Begegnung fand vor 40 Millionen Jahren statt. Seither rotiert die kleinere Galaxie gegen den Uhrzeigersinn und liegt leicht hinter der größeren Galaxie. Der Raum zwischen den Sternen ist so unermesslich leer, dass die Sterne in den Galaxien bei der Kollision üblicherweise nicht zusammenstoßen.

Zur Originalseite

Seltsame kometenartige Knoten im Helixnebel

Bei hoher Auflösung findet man im Helixnebel eineVielzahl an Knoten, die ähnlich wie Kometen aussehen. Auf dem bläulichen Bild sind die gelblich oder grün gefärbten Kometenteile nach rechts unten gerichtet.

Credit: C. R. O’Dell und K. Handron (Rice-Universität), NASA

Wie entstehen die ungewöhnlichen Knoten aus Gas und Staub in planetarischen Nebeln? Sie befinden sich sowohl im Ringnebel als auch im Hantelnebel oder in NGC 2392. Solche Knoten wurden nicht vermutet, und ihr Ursprung ist noch immer nicht erforscht.

Dieses faszinierende Bild des Helixnebels stammt vom Weltraumteleskop Hubble, es zeigt eine enorme Vielfalt der rätselhaften Gasknoten. Die oben gezeigten kometenartigen Knoten haben eine ähnliche Masse wie die Erde, aber ihr Radius beträgt ein Vielfaches der Entfernung Sonne-Pluto. Eine Hypothese zur Aufteilung und Entstehung dieser Knoten lautet, dass vorhandenes Gas von einem weniger dichten, aber sehr energiereicheren stellaren Wind des Zentralsterns hinausgetrieben wird.

Der Helixnebel ist der nächstgelegene planetarische Nebel. Solche Nebel entstehen am Ende eines sonnenähnlichen Sternes. Dieser Nebel mit der Katalognummer NGC 7293 ist etwa 700 Lichtjahre entfernt und befindet sich im Sternbild Wassermann.

Zur Originalseite

Katzenauge von Hubble remixed

Der Katzenaugennebel besteht aus mehreren Hüllen, die von runden, wellenförmigen Strukturen umgeben sind.

Credit und Bildrechte: Vicent Peris (OAUV / PTeam), MAST, STScI, AURA, NASA

Der faszinierende Katzenaugennebel (NGC 6543) starrt dreitausend Lichtjahre von der Erde entfernt in den interstellaren Raum. Er hat einen Durchmesser von mehr als einem halben Lichtjahr und ist einer der bekanntesten planetarischen Nebel am Himmel. Er stellt eine letzte, kurze und dennoch glorreiche Phase in der Entwicklung eines sonnenähnlichen Sterns dar.

Vielleicht erzeugte der sterbende Zentralstern dieses Nebels das einfache, äußere Muster aus konzentrischen Staubschalen, indem er in einer Serie regelmäßiger Sternbeben seine äußeren Hüllen abstieß. Doch die Entstehung der schönen, komplexeren inneren Strukturen konnte noch nicht geklärt werden.

Hier wurden Archivdaten des Weltraumteleskops Hubble überarbeitet, um einen neuen Blick auf das kosmische Katzenauge zu werfen. Im Vergleich zu bekannten Hubble-Bildern soll diese Ausarbeitung die Details in den hellen und dunklen Bereichen des Nebels schärfer und besser abbilden. Dazu wurde eine umfangreichere Farbpalette verwendet.

Ein Blick tief in das Katzenauge könnten Astronomen das Schicksal unserer Sonne zeigen, die in etwa fünf Milliarden Jahren ihre Entwicklung als planetarischer Nebel beginnt.

Zur Originalseite

Sternbildungsregion LH 95

Siehe Beschreibung. Ein Klick auf das Bild liefert die höchste verfügbare Auflösung.

Credit: Hubble Heritage Team, D. Gouliermis (MPI Heidelberg) et al., (STScI/AURA), ESA, NASA

Beschreibung: Wie entstehen Sterne? Um diesen komplexen und chaotischen Vorgang besser zu verstehen, bildeten Forschende die Sternbildungsregion LH 95 in der nahe gelegenen Großen Magellanschen Wolke mit dem Weltraumteleskop Hubble beispiellos detailreich ab.

Normalerweise sind nur die hellsten, blauen, massereichsten Sterne in einer Sternbildungsregion zu sehen, doch das Bild oben wurde mit so hoher Auflösung und in spezifischen Farben aufgenommen, dass auch viele der neu gebildeten, gelberen, schwächeren und masseärmeren Sterne sichtbar sind.

Außerdem ist auf dem nach wissenschaftlichen Kriterien gefärbten Bild ein blauer Schimmer von diffusem Wasserstoff zu sehen, der von den jungen Sternen aufgeheizt wird, sowie dunkler Staub, der von den Sternen oder bei Supernovaexplosionen erzeugt wurde. Wenn man die Positionen und Häufigkeit von masseärmeren Sternen in Sternbildungsregionen und rund um Molekülwolken untersucht, kann man erkennen, unter welchen Bedingungen sie entstanden sind.

LH 95 erstreckt sich über 150 Lichtjahre und liegt etwa 160.000 Lichtjahre entfernt im südlichen Sternbild Schwertfisch (Dorado).

Zur Originalseite

M104: Hubble-Remix

Siehe Beschreibung. Ein Klick auf das Bild liefert die höchste verfügbare Auflösung.

Credit und Bildrechte: Vicent Peris (OAUV / PTeam), MAST, STScI, AURA, NASA

Beschreibung: Die markante Spiralgalaxie M104 ist fast genau von der Kante sichtbar und besitzt einen breiten Rand aus dunklem Staub. Der breite Streifen aus kosmischen Staubbahnen, den man als Silhouette vor einer hellen Wölbung aus Sternen sieht, verleiht der Galaxie auf Bildern im sichtbaren Licht eine hutähnliche Erscheinung, was zu dem gängigen Eigennamen Sombrerogalaxie führte. Für diese Bildvariante der bekannten Galaxie wurden Daten aus dem Archiv des Weltraumteleskops Hubble neu aufbereitet. Die neue Ausarbeitung verbessert die Sichtbarkeit von Details, die ansonsten im übermächtigen Glanz verloren gehen. Daher kann man die Struktur der Staubbahnen dieser Galaxie hier gut bis ins helle Innere verfolgen. M104 hat einen Durchmesser von etwa 50.000 Lichtjahren und ist 28 Millionen Lichtjahre entfernt. Sie ist eine der größten Galaxien am südlichen Ende des Virgo-Galaxienhaufens.

Zur Originalseite

M1: Der Krebsnebel von Hubble

Das explodierte Staubgewirr ist der berühmte Krebsnebel im Stier, der 1. Eintrag auf Messiers Liste (M1).

Bildcredit: NASA, ESA, J. Hester, A. Loll (ASU); Dank an: Davide De Martin

Beschreibung: Dieses Durcheinander bleibt übrig, wenn ein Stern explodiert. Der Krebsnebel ist das Ergebnis einer Supernova, die 1054 n. Chr. zu sehen war, er ist mit rätselhaften Fasern gefüllt. Diese Filamente sind nicht nur ungeheuer komplex, sondern besitzen anscheinend auch weniger Masse, als von der ursprünglichen Supernova ausgeworfen wurde, sowie eine höhere Geschwindigkeit, als man von einer freien Explosion erwarten würde.

Dieses Bild wurde mit dem Weltraumteleskop Hubble aufgenommen und in drei wissenschaftlich zugeordneten Farben dargestellt. Der Krebsnebel ist 10 Lichtjahre groß. Im Zentrum des Nebels liegt ein Pulsar – ein Neutronenstern mit der Masse der Sonne, aber nur so groß wie eine kleine Stadt. Der Krebs-Pulsar rotiert etwa 30 Mal in der Sekunde.

Zur Originalseite

Ein schöner Bumerangnebel

Siehe Beschreibung. Ein Klick auf das Bild liefert die höchste verfügbare Auflösung.

Credit: Hubble-Vermächtnisteam, J. Biretta (STScI) et al., (STScI/AURA), ESA, NASA

Beschreibung: Diese symmetrische Wolke, auch Bumerang-Nebel genannt, wurde von einem stellaren Wind aus Gas und Staub erzeugt, der von einem alternden Zentralstern stammt und Geschwindikgeiten von annähernd 600.000 Kilometern pro Stunde erreicht. Die rasche Ausdehnung kühlte die Moleküle im Gas des Nebels auf etwa ein Grad über dem absoluten Nullpunkt ab – das ist sogar kälter als die kosmische Hintergrundstrahlung und macht diesen Nebel zur kältesten uns bekannten Region im fernen Universum. Der kalte Bumerang-Nebel wird vom Licht des Zentralsterns, das vom Staub reflektiert wird, beleuchtet und für einen Stern oder ein Sternsystem gehalten, der sich zu einem planetarischen Nebel entwickelt. Dieses Hubble-Bild wurde mithilfe von Polarisationsfiltern aufgenommen (ähnlich Polaroid-Sonnenbrillen) und entsprechend der verschiedenen Winkel des polarisierten Lichtes eingefärbt. Das atemberaubende Ergebnis legt eine Spur zu den kleinen Staubpartikeln, die für die Polarisation und Streuung des Lichtes sorgen. Der Bumerang-Nebel ist etwa ein Lichtjahr groß und liegt ungefähr 5.000 Lichtjahre entfernt in Richtung des Sternbildes Zentaurus.

Zur Originalseite