Arp 142: Die Kolibri-Galaxie

Oben im Bild leuchten zwei gezackte blaue Sterne. Untn ist eine aufgezogene, stark verzerrte Galaxie mit vielen dunklen Fasern und Staubbahnen, darunter befindet sich eine strukturlos wirkende elliptische Galaxie. Der Hintergrund des Bildes ist dunkel und wirkt auf den ersten Blick sternenlos.

Bildcredit: NASA, ESA, Hubble, HLA; Bearbeitung und Bildrechte: Basudeb Chakrabarti

Was ist mit dieser Spiralgalaxie passiert? Vor ein paar hundert Millionen Jahren war NGC 2936, die obere der beiden großen Galaxien im unteren Bildteil, wahrscheinlich eine normale Spiralgalaxie, die sich drehte, Sterne bildete und ihrer Wege ging. Doch dann kam sie der massereichen elliptischen Galaxie NGC 2937 darunter zu nahe und zog eine Kurve.

NGC 2936 wird wegen ihrer kultigen Form manchmal Kolibrigalaxie genannt. Sie wurde nicht nur abgelenkt, sondern durch die enge gravitative Wechselwirkung auch verzerrt. Hinter Fasern aus dunklem interstellarem Staub bilden helle, blaue Sterne die Nase des Kolibris, während das Zentrum der Spirale wie ein Auge erscheint.

Das Galaxienpaar ist gemeinsam als Arp 142 bekannt. Manche erkennen darin auch einen Schweinswal oder Pinguin, der ein Ei schützt. Dieses überarbeitete Bild zeigt Arp 142 sehr detailreich. Es wurde mit dem Weltraumteleskop Hubble aufgenommen.

Arp 142 ist etwa 300 Millionen Lichtjahre entfernt und befindet sich im Sternbild Wasserschlange (Hydra). In etwa einer Milliarde Jahre verschmelzen die beiden Galaxien zu einer größeren Galaxie.

Zur Originalseite

Methan auf fernem Exoplaneten entdeckt

Links unten leuchtet ein kleiner roter Stern, in der Mitte ist eine kleinere Sichel eines Mondes, rechts füllt die beleuchtete Sichel eines Planeten das halbe Bild.

Illustrationscredit: Ahmad Jabakenji (ASU Libanon, Nordstern Weltraumkunst); Daten: NASA, ESA, CSA, JWST

Wo könnte es sonst noch Leben geben? Eine der großen offenen Fragen der Menschheit, nämlich die Suche nach Planeten, auf denen es vielleicht extrasolares Leben gibt, kam 2019 einen großen Schritt voran: In der Atmosphäre des fernen Exoplaneten K2-18b wurde eine beträchtliche Menge Wasserdampf entdeckt.

Der Planet und sein Elternstern K2-18 liegen etwa 124 Lichtjahre entfernt im Sternbild Löwe (Leo). Der Exoplanet ist deutlich größer und massereicher als unsere Erde, doch er kreist in der bewohnbaren Zone seines Heimatsterns. K2-18 ist zwar rötlicher als unsere Sonne, leuchtet aber am Himmel von K2-18b ähnlich hell wie die Sonne am Himmel der Erde.

Die Entdeckung von Wasser in der Atmosphäre im Jahr 2019 gelang mit Daten dreier Weltraumteleskope: Hubble, Spitzer und Kepler. Diese Teleskope zeichneten die Absorption der Farben von Wasserdampf auf, während sich der Planet vor seinem Stern vorbeibewegte.

2023 wurden bei weiteren Beobachtungen durch das Weltraumteleskop Webb im Infrarotlicht Hinweise auf weitere Moleküle entdeckt, die auf Leben hindeuten, zum Beispiel Methan.

Die Illustration zeigt rechts den Exoplaneten K2-18b, der von einem Mond (Mitte) umkreist wird. Beide umrunden zusammen den roten Zwergstern links unten.

Zur Originalseite

Der Galaxienhaufen Abell 370 und mehr

Das Bild ist voller Galaxien. Im Vordergrund befinden sich unverzerrte Galaxien, dazwischen sind schmale Bögen von weit dahinter liegenden, stark verzerrten Galaxien verteilt.

Bildcredit: NASA, ESA, Jennifer Lotz und das HFF-Team (STScI)

Dieser scharfe Schnappschuss des Weltraumteleskops Hubble zeigt den etwa 4 Milliarden Lichtjahre entfernten massereichen Galaxienhaufen Abell 370. Er wird scheinbar von zwei riesigen elliptischen Galaxien betont und ist von blassen Bögen durchzogen.

Die blasseren, überall verteilten bläulichen Bögen und der imposante Drachenbogen links unter der Mitte sind in Wirklichkeit Bilder von Galaxien, die weit hinter Abell 370 liegen. Ihr Licht, das sonst unentdeckt bleiben würde, legte die doppelte Entfernung zurück. Die gewaltige Gravitationsmasse des Haufens – überwiegend unsichtbare Dunkle Materie – vergrößert und verzerrt ihr Licht.

Der Effekt, der diesen spannenden Ausblick auf Galaxien im frühen Universum ermöglicht, ist als Gravitationslinseneffekt bekannt. Gravitationslinsen sind eine Folge der gekrümmten Raumzeit und wurden erstmals vor etwa 100 Jahren von Einstein vorhergesagt.

Abell 370 liegt weit hinter dem gezackten Vordergrundstern in der Milchstraße, der rechts unten im Sternbild Walfisch, dem Meeresungeheuer, leuchtet. Der Galaxienhaufen war der letzte von sechs, die beim Projekt Grenzgebiete abgebildet wurden.

Zur Originalseite

Fragmente des Kometen Schwassmann-Wachmann 3

Diagonal im Bild sind leuchtende Trümmer des Kometen Schwassmann-Wachmann 3, umgeben von einem Schweif der von links oben nach links unten verläuft.

Bildcredit: NASA, ESA, H. Weaver (JHU / APL), M. Mutchler und Z. Levay (STScI)

Der periodische Komet 73P/Schwassmann-Wachmann 3 ist mindestens zweimal zerbrochen. Dieser Komet ist ein kosmisches Soufflé aus Eis und Staub, das aus dem frühen Sonnensystem übrig blieb. Als er 1995 auf seiner Umlaufbahn näherkam, wurde erstmals beobachtet, wie er in mehrere große Stücke zerbrach. Bei seiner Passage 2006 zerfiel er in Dutzende Bruchstücke, die am Himmel über mehrere Grad reichten.

Da Kometen relativ zerbrechlich sind, sind wahrscheinlich die Belastungen durch Hitze, Gravitation und Ausgasen dafür verantwortlich, dass sie auf so spektakuläre Weise zerbrechen, wenn sie sich der heißen Sonne nähern.

Das Weltraumteleskop Hubble fotografierte 2006 diese scharfe Ansicht des kleinteiligen Fragments B, das eine Vielzahl kleiner Teile hinter sich herzieht. Jeder davon besitzt eine eigene Koma und einen Schweif. Das Bild umfasst in der Entfernung des Kometen mehr als 3000 Kilometer, dieser ist 32 Millionen Kilometer vom Planeten Erde entfernt.

Zur Originalseite

SN 1006: Ein Supernova-Band von Hubble

Quer durchs Bild verläuft von links unten nach rechts oben ein rotes Band. Der Hintergrund ist von Sternen gesprenkelt.

Bildcredit: NASA, ESA, Hubble-Vermächtnis (STScI/AURA); Danksagung: W. Blair et al. (JHU)

Wie entstand dieses ungewöhnliche Band im Weltraum? Die Antwort: Durch eine der gewaltsamsten Explosionen, die je in der Antike zu sehen war. Im Jahr 1006 erreichte das Licht einer Sternexplosion im Sternbild (Lupus) die Erde. Es bildete einen „Gaststern“ am Himmel, der heller leuchtete als die Venus und mehr als zwei Jahre bestehen blieb.

Die Supernova ist heute als SN 1006 katalogisiert. Sie ereignete sich in einer Entfernung von etwa 7000 Lichtjahren und hinterließ einen riesigen Überrest, der sich immer noch ausdehnt und verblasst.

Das Bild zeigt einen kleinen Teil dieses expandierenden SupernovaÜberrestes. Er wird von einer dünnen, auswärts wandernden Stoßfront begrenzt, die das umgebende Gas aufheizt und ionisiert. Der Supernovaüberrest SN 1006 hat inzwischen einen Durchmesser von fast 60 Lichtjahren.

Zur Originalseite

Der Adlernebel mit heißen Röntgensternen

Säulen aus Gas und dunklem Staub verlaufen diagonal von links unten nach rechts oben. Leuchtstarke Röntgenquellen sind als helle Punkte um das Bild herum eingeblendet. Infraroter Staub leuchtet hinter den Säulen.

Bildcredit: Röntgen: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; Infrarot: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Sichtbares Licht: Hubble: NASA/ESA/STScI, ESO; Bildbearbeitung: L. Frattare, J. Major, N. Wolk und K. Arcand

Wie sehen die berühmten Sternsäulen im Adlernebel in Röntgenlicht aus? Um das herauszufinden, spähte das NASA-Röntgenobservatorium Chandra im Orbit in und durch diese interstellaren Berge der Sternbildung. Es zeigte sich, dass die Staubsäulen selbst nicht viel Röntgenlicht abstrahlt, doch es kamen viele kleine, aber helle Röntgenquellen zum Vorschein. Sie sind als helle, rötliche Punkte abgebildet.

Das Bild ist ein Komposit aus Aufnahmen von Chandra (Röntgen), XMM (Röntgen), JWST (Infrarot), Spitzer (Infrarot), Hubble (visuell) und dem VLT (visuell). Welche Sterne diese Röntgenstrahlen erzeugen, wird weiterhin erforscht, doch einige sind vermutlich heiße, kürzlich entstandene Sterne mit geringer Masse, andere dagegen heiße, ältere Sterne mit großer Masse.

Die heißen Röntgensterne sind im Bild verteilt. Schon früher wurden sie als verdampfende gasförmige Globulen (EGGS) erkannt. In sichtbarem Licht sind sie unsichtbar, und derzeit sind sie auch nicht heiß genug, um Röntgenlicht abzustrahlen.

Zur Originalseite

Hüllen und Bögen um den Stern CW Leonis

In der Mitte leuchtet ein Stern, der von vielen Hüllen um geben ist, die als Bögen abgebildet sind. Links im Bild sind drei Galaxien erkennbar, zwei davon sehen wir fast von der Kante. Im ganzen Bild sind weitere kleinere Galaxien verteilt.

Bildcredit: ESA, NASA, Hubble, T. Ueta (U. Denver), H. Kim (KASI)

Was passiert um diesen Stern? Das ist nicht genau bekannt. CW Leonis ist der nächstgelegene Kohlenstoffstern. Solche Kohlenstoffsterne erscheinen orangefarben, weil durch die Kernfusion im Inneren atmosphärischer Kohlenstoff verteilt wird. Doch CW Leonis ist offenbar auch in einen gasförmigen, kohlenstoffreichen Nebel eingebettet. Wir wissen nicht, weshalb der Nebel so komplex ist, doch die Geometrie seiner Hüllen und Bögen ist faszinierend.

Dieses Bild des Weltraumteleskops Hubble zeigt Details dieser Komplexität. Kohlenstoffsterne besitzen eine geringe Oberflächengravitation. Daher können sie Kohlenstoff und Kohlenstoffverbindungen leichter in den Weltraum ausstoßen. Aus einem Teil dieses Kohlenstoffs entsteht dunkler Staub, der häufig in den Nebeln junger Sternbildungsregionen und in den Scheiben von Galaxien zu beobachten ist.

Menschen und alles Leben auf der Erde basiert auf Kohlenstoff, und zumindest ein Teil unseres Kohlenstoffs zirkulierte wahrscheinlich einst in den Atmosphären von Sternen am Ende ihrer Existenz, wie z. B. in Kohlenstoffsternen.

Zur Originalseite

Der verlorene Stern Eta Carinae

Der Homunkulusnebel besteht aus zwei Keulen, die in der Bildmitte hell leuchten. Rechts sind die Keulen von einem roten Nebel umgeben.

Bildcredit und Bildrechte: NASA, ESA, Hubble; Bearbeitung und Lizenz: Judy Schmidt

Der Stern Eta Carinae explodiert vielleicht bald. Aber niemand weiß, wann – vielleicht nächstes Jahr, vielleicht aber auch in einer Million Jahren. Eta Carinae besitzt etwa 100 Sonnenmassen. Das macht ihn zu einem erstklassigen Kandidaten für eine gewaltige Supernova. Historische Aufzeichnungen berichten, dass Eta Carinae vor etwa 170 Jahren einen ungewöhnlichen Ausbruch erlebte, der ihn zu einem der hellsten Sterne am Südhimmel machte. Eta Carinae im Schlüssellochnebel ist der einzige Stern, bei dem derzeit vermutet wird, dass er natürliches LASER-Licht abstrahlt.

Dieses Bild zeigt Details in dem ungewöhnlichen Nebel, der diesen wilden Stern umgibt. Die hellen, vielfarbigen Streifen, die von Eta Carinaes Zentrum ausgehen, sind vom Teleskop verursachte Beugungsspitzen. Die beiden getrennten Keulen des Homunkulusnebels umschließen die heiße Zentralregion. Rechts im Bild befinden sich einige seltsame radiale rote Streifen. Die Keulen sind von Schlieren aus Gas und Staub durchzogen, die das blaue und ultraviolette Licht absorbieren, das nahe dem Zentrum abgestrahlt wird. Die Streifen sind jedoch nicht erklärbar.

Zur Originalseite